20
1/20 Accelerating minimizations in ensemble variational assimilation G. Desroziers, L. Berre Météo-France/CNRS (CNRM/GAME)

1/20 Accelerating minimizations in ensemble variational assimilation G. Desroziers, L. Berre Météo-France/CNRS (CNRM/GAME)

  • View
    225

  • Download
    1

Embed Size (px)

Citation preview

1/20

Accelerating minimizations in ensemble variational assimilation

G. Desroziers, L. BerreMétéo-France/CNRS (CNRM/GAME)

2/20

Outline

1. Ensemble Variational assimilation

2. Accelerating minimizations

3. Conclusion and future work

3/20

Outline

1. Ensemble Variational assimilation

2. Accelerating minimizations

3. Conclusion and future work

4/20

Simulation of analysis errors :  «hybrid EnKF/Var» or «consistent ensemble 4D-Var»?

A consistent 4D-Var approach can be used in both ensemble and deterministic components :

Simple to implement (perturbed Var ~ unperturbed Var).

A full-rank hybrid B is consistently used in the 2 parts.

Non-linear aspects of 4D-Var can be represented (outer loop).

5/20

The operational Météo-France ensemble Var assimilation

Six perturbed global members, T399 L70 (50 km / 10 km), with global 4D-Var Arpege.

Spatial filtering of error variances, to further increase the sample size and robustness.

Inflation of ensemble B / model error contributions,soon replaced by inflation of perturbations.

6/20

Applications of the EnDA system at Météo-France

Flow-dependent background error variances in 4D-Var.

Flow-dependent background error correlations experimented

using wavelet filtering properties (Varella et al 2011 a,b) .

Initialisation of Météo-France ensemble prediction by EnDA.

Diagnostics on analysis consistency and observation impact

(Desroziers et al 2009) .

7/20

Background error standard deviations

Connexion between large b’s and intense weather ( Klaus storm, 24/01/2009, 00/03 UTC )

Mean sea level pressure field

8/20

Background error correlationsusing EnDA and wavelets

Wavelet-implied horizontal length-scales (in km), for wind near 500 hPa, averaged over a 4-day period.

(Varella et al 2011b, and also Fisher 2003, Deckmyn and Berre 2005, Pannekoucke et al 2007)

9/20

Outline

1. Ensemble Variational assimilation

2. Accelerating minimizations

3. Conclusion and future work

10/20

Ensemble variational assimilation

Ens. variational assimilation (similar to EnKF): for l = 1, L (size of ensemble)

a

l = (I – KH) b

l + K o

l, with H observation operator matrix, K implicit gain matrix, o

l = R1/2 ol and o

l a vector of random numbers

b+l = M a

l + m

l ,

with ml = Q ½ m

l , ml a vector of random numbers

and Q model error covariance matrix.

Minimize L cost-functions Jl, with perturbed innovations dl:

Jl(xl) = 1/2 xlT B-1 xl + 1/2 (dl-Hl xl)T R-1 (dl-Hl xl),

with B and R bg and obs. error matrices, and dl = yo + R1/2 ol - H(M(xb

l )),

xal = xb

l + xl and xbl+ = M( xa

l) + Q1/2 ml .

11/20

Hessian matrix of the assimilation problem

Hessian of the cost-function:

J’’ = B-1 + HT R-1 H.

Bad conditioning of J’’: very slow (or no) convergence.

Cost-function with B1/2 preconditioning ( x = B1/2 ):

J() = 1/2 T + 1/2 (d-H B1/2 )T R-1 (d-H B1/2 )

Hessian of the cost-function:

J’’ = I + BT/2 HT R-1 H B1/2 .

Far better conditioning and convergence!

(Lorenc 1988, Haben et al 2011)

12/20

Lanczos algorithm

Generate iteratively a set of k orthonormal vectors q such as

QkT J’’ Qk = Tk,

where Qk = (q1 q2 … qk ), and Tk is a tri-diagonal matrix.

The extremal eigenvalues of Tk quickly converge towards the extremal eigenvalues of J’’.

If Tk = Yk k YkT is the eigendecomposition of Tk, the Ritz vectors are

obtained withZk = Qk Yk

and the Ritz pairs (zk, k) approximate the eigenpairs of J’’.

13/20

Lanczos algorithm / Conjugate gradient

Use of the Lanczos vectors to get the solution of the variational problem:

k = 0 + Qk k .

Optimal coefficients k should make the gradient of J vanish at k:

J’(k) = J’(0) + J’’ (k-0)

= J’(0) + J’’ Qk k

= 0,which gives

k = - ( QkT J’’ Qk )-1 Qk

T J’(0)

= - Tk-1

J’(0),

and then k = 0 - Qk Tk

-1 Qk

T J’(0).

Same solution as after k iterations of a Conjugate Gradient algorithm.

(Paige and Saunders 1975, Fisher 1998)

14/20

Minimizations with

- unperturbed innovations d and - perturbed innovations dl have basically the same Hessians:

J’’(d) = I + BT/2 HT R-1 H B1/2 ,

J’’(dl) = I + BT/2 HlT R-1 Hl B1/2 ,

The solution obtained for the « unperturbed » problem

k = 0 - Qk ( QkT J’’ Qk )-1

QkT J’(0, d)

can be transposed to the « perturbed » minimization

k,l = 0 - Qk ( QkT J’’ Qk )-1

QkT J’(0, dl)

to improve its starting point.

Accelerating a « perturbed » minimization using « unperturbed » Lanczos vectors

15/20

Accelerating a « perturbed » minimization using « unperturbed » Lanczos vectors

Perturbed analysisdashed line : starting point with 50 Lanczos vectors

16/20

Accelerating a « perturbed » minimization using « unperturbed » Lanczos vectors

Decrease of the cost function

for a new « perturbed » minimization

1 stand-alone minim.

10 vectors

50 vectors

100 vectors

17/20

Accelerating minimizations using « perturbed » Lanczos vectors

If L perturbed minim. with k iterations have already been performed, then the starting point of a perturbed (or unperturbed) minimizationcan be written under the form

k = 0 + Qk,L k,L,

where k,L is a vector of k x L coefficients and

Qk,L = (q1,1 … qk,1 … q1,L … qk,L )

is a matrix containing the k x L Lanczos vectors.

Following the same approach as above, the solution can be expressed and computed:

k,L = 0 – Qk,L ( Qk,LT J’’ Qk,L )-1 Qk,L

T J’(0).

Matrix Qk,LT J’’ Qk,L is no longer tri-diagonal, but can be easily inverted.

18/20

1 stand-alone minim.

10x1 = 10 «synergetic» vectors50x1 = 50 «synergetic» vectors

Decrease of the cost functionfor a new « perturbed » minimization

Accelerating minimizations using « perturbed » Lanczos vectors (k = 1)

100x1 = 100 «synergetic» vectors

19/20

Outline

1. Ensemble Variational assimilation

2. Accelerating minimizations

3. Conclusion and future work

20/20

Conclusion and future work

Ensemble Variational assimilation: error cycling can be simulated in a way consistent with 4D-Var.

Flow-dependent covariances can be estimated.

Positive impacts, in particular for intense/severe weather events, from both flow-dependent variances and correlations.

Accelerating minimizations seems possible(preliminary tests in the real size Ens. 4D-Var Arpege also encouraging).

Connection with Block Lanczos / CG algorithms (O’Leary 1980) .

Possible appl. in EnVar without TL/AD (Lorenc 2003, Buehner 2005) .