76
KR0100937 KAERI/RR-2078/2000 7HW 1*1- ^£(2000) Development of Contact Failure Analysis Technology - First Year(2000) Report -

1*1- ^£(2000) Development of Contact Failure Analysis

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

KR0100937

KAERI/RR-2078/2000

7HW1*1- ^£(2000)

Development of Contact Failure Analysis Technology

- First Year(2000) Report -

KAERI/RR-2078/2000

l - 2000

2001

7)

2.

I.

II.

Sit)-.

5-7-7} 3711 #«J

# ^ 1 tfl«|.

in.-i: JL^sfJL

IV.

Square Punch, Wedge ^ Cylinder^ ^ ^ ^ . S . ^ -^-^

J T . ^ ^ . ^ ^ tL ^^T- ^ S q u a r e P u n c h 6\]

o)

- fl

-1: 33SMI . o]

o]-g-*V ^ o^

111

A

v.

IV

SUMMARY

I. Project Title

Development of Contact Failure Analysis Technology

II. Objective and Importance of the Project

This research focuses primarily on the mechanical analysis of contact failure, which

can be advocated as an originality of the project. Fretting failure is presently considered for

the contact failure, which has been widely found in the nuclear industry (e.g., fuel, steam

generator, piping systems etc.) as well as in the mechanical industry (e.g., gear, press fits,

joints with bolt and nuts, etc.). A contacting part is often found in the structural design of

mechanical components, and the failure due to the contact is intrinsically inevitable during

service of the components. However, if we can identify the parameters that affect the failure

and procure a tool for analyzing the parameters, the failure can be controlled and reduced, in

other words, a design guideline for alleviating the contact failure is to be implemented. The

purpose of this research is to develop such a realistic methodology. To this end, it is intended

to draw a method of analyzing and controlling the contact failure using solid mechanics

theory as well as experiments. Including the above, wear and cracking failure due to contact

reduce the design life of the mechanical components considerably. Therefore, the importance

of present research cannot be underestimated since it can be used for developing a

technology of evaluating and extending the design life.

III. Scope and Contents of Project

In this research, wear and cracking failure are considered as a contact failure. As the

parameters for explaining these failures, friction energy dissipation from the contact

surface is referred to for wear, while stress intensity factors of a surface breaking crack is

studied for the cracking failure. It is the first step to evaluate contact tractions to obtain the

friction energy and the stress intensity factors which need to be quantified for the analysis

of contact failure. On the other hand, contact failure experiments are also carried out using

the fretting wear tester that has been developed for fretting test of fuel rod. The

experimental results are analyzed and compared with the theoretical analysis. For the

experimental analysis, an algorithm of calculating the wear volume is newly developed,

which gives further accurate result compared with the conventionally used method.

IV. Result of Project

Contact tractions are affected by the geometry of contacting bodies. In the present

research, square punch, wedge and cylinders are considered as the geometry. Among the

geometry, a square punch with rounded corners is basically used since it can give

generalization of the geometry. Normal traction profile is obtained in the case of the rounded

punch, and shear tractions are evaluated under the partial slip regime by using the influence

function method.

Multiplication of the shear traction and slip displacement in the slip region of the

contact provides the friction energy dissipation from the contact. Since the trace of the shear

force influences the amount of the dissipated energy, a desirable trace of the shear force may

be supposed to reduce the energy dissipation. If wear is explained as the energy dissipation,

it can be possible to suggest a certain trace of the shear force (or relative motion of the

contacting bodies).

Internal stresses are evaluated from the contact normal and shear tractions, which are to

be used for calculating the stress intensity factors of a surface breaking crack emanated from

the contact surface. Fretting condition is composed when shear force is exerted cyclically to

the contacting bodies. The stress intensity factors, K\ and Ku, are investigated during the

cyclic shear. It is found that a period of crack opening exists during a shear cycle, which is

effective for crack growing. So, to reduce the period can be a method for restraining the

cracking failure. On the other hand, the stress intensity factors vary if the roundness of the

punch changes. This result provides an idea that there can exist a desirable shape of the

contacting body, which can restrain the cracking failure. It must be a very valuable outcome

since we can control the cracking failure by changing the shape of contacting bodies in the

design stage.

In the experiment, fretting wear tester is used with the specially designed specimen.

Stationary specimen similar to the tensile test specimen is indented by a moving specimen,

which has the shape of rounded punches with three different corner radii. Wear of the contact

surface are observed in detail, which show typical shape following the partial and gross slip

regimes. In addition, an algorithm for evaluating the wear volume is newly developed using

the signal processing technique and the Fast Fourier Transform (FFT).

V. Proposal for Application

Methods developed for the contact tractions and the internal stresses can be used not

only for the analysis of the fuel fretting failure which KNFC is presently interested in, but

also for the design of the contact components which may be widely occurred during the

design task conducted by the industry including KEPCO. The fretting wear experiment

technology can be used for the similar experiments, which may be planned by the industry

where wear is brought into focus. Procurement of a design guideline and evaluation of the

structure lifetime are the subjects of the project, which can be extended from the present

work.

VII

CONTENTS

SUBMISSION

SUMMARY

CONTENTS

LIST OF FIGURES

CHAPTER 1 Introduction 1

CHAPTER 2 Research Subjects 3

SECTION 1 Analysis of Contact Tractions 3

1. Overview 3

2. Normal Traction 6

3. Shear Traction • 8

4. Numerical Analysis 12

5. Results and Discussion 17

SECTION 2 Method of Theoretical Analysis of Contact Failure 24

1. Overview 24

2. Friction Energy Dissipation 25

3. Crack Analysis 27

SECTION 3 Experiments and Calculation of Wear Volume 43

1. Fretting Wear Tester 43

2. Experimental Method and Specimen 44

3. Results 47

4. Calculation of Wear Volume • • 50

CHAPTER 3 Concluding Remarks 59

CHAPTER 4 References 60

VIII

SUMMARY

CONTENTS

4 1

4] 2

46.

7.

8.

9.

10.

2 ^

4.

5.

6.

3 *i

5.

6.

7.

8.

41 3

4 4

3

3

3

6

8

12

17

24

24

25

27

43

43Al^! : ' ' ' 44

47

Tfl-S: 50

59

60

IX

1.1.

1.2.

1.3.

1.4.

1.5.

1.6. Mindlin-Cattaneo

1.7.

1.8.

1.9.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8. 51^1

^•(at a/w = 0.00 \,l/w = 0.56).

2.9. l/w oil 4^ - ^ ^ V ^ ft 4 ° l

0.001,0 = 30°).

3J 3.1.

3.2.

3.3. H

y o V # .

HoV

= 0.005).

^5}-(at

3.4.

3.5.

3.6.

15/imSl

a>^]f- 2.5 mm).

50 N, $.%• 400 /im ?

# (a) 2.5 mm, (b) 15 mm.

37l (a) 30 N, (b) 50

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

30 , 20

3.10

3.10

(64)^

XI

M

^(fretting failure)^ ^- #^)1 ^ sfq- Sfe # tfcontact

tb ^ ^ - i - «>7i] 3 J ! °11- ^ # ^ ^ ° l l A i ^ ^ ^lH^(Gross Slip £ ^ GrossSliding)

OH- a-^- nlii^(PartialSlip) M^ &% £ Q ^ ] & ^n) l ^H1 flfl

1:711

31

o)

^ ^ ^ ^ . 5 1 HL l ^ . Bj-tH^ ^ ^ 1 ^ ^ ^ # 7

$14.

Si71

Sltr 7)a-i-

27))

SEM ^ #

2 S S

1. 7fl

0} S\H

7> ^-ffe

0

1 3.71

(incomplete contact)^5f £•??•£]7l£.

Ufl

^5} 7}- r^^Cf. ^1^1

3717> ^ # * B ^ *?-$•$; ^ ^ - 1 - S } ^ ^^(complete contact)^

si4.

7}

[8].

(partial slip) ^^1^1 «f l^^ H ^ ^ H # ^ l | flf ^ 4

Mindlin[10]4

Cattaneo^l fil«fl

-^r -S-

l.l. e } - ^ 31 *H

nsjuj-

3L

^^(influence function) ^ #

^ Bentall4 Johnson[13H

*>°i x ^

\. y

2.

7]-

0)

Dunders

0)

= 0) Sfe

-dt, (4)

(5)

P ;r-2^0-sin20o

{TC -2<j>0)cos<j>

tan-—^-tan-—-2 2

(6)

(7)

sin a)(8)

o) S\5L, alb = 0.9^ i f l^S. ^ tfl -g-^S] 3 7 ^ SflSS3iZ|-o]

-1.0 -0.5 0.0 0.5 1.0y la

3.

o\) (gross slip) #*fl7> € 4 . °]

(l)

2 dy n[y-ri(9)

(9)1-

°H ^

-g-

-g- (9)1- ol-g-^ nfl,

o]o)]

£.«\ ^

Bentall4 Johnson[13]^l

linear^7?| Slfe

Johnson^l

^-°l piecewise

0th

1.3.

-ofl .^| o]

10

ux-SAy

Ssy =Suy-SAy,

qx-Ssx<0,

q,Ssy<0.

(10)

(11)

(12)

x ^ y

(13)

(14)

(15)

11

(16)

(17)

(18)

4.

1.3 $•

x ^ y

[l].

+ C,

(19)

E SH- v^

1.3

12

, x ^£.

<JxAnGd

(20)

^ x-S-^^ 371, G^-

(19)

Tfl

27V ^ 1.3 4 ^

X ^- y

wi-o]

(27V-1)

collocation point

bIN 4 Q6\

collocation point

(19)

«

, tj = bnIN HZ\JL d =

-g-^

uk(m,n) = Ak\ —n=-N+l

- n -1 ) 2 ln(w - n - 1)2-2(OT -n)2ln(w -«)2+CJ, (21)

= x or

13

A=-

A y -

(1+V)KE '

0-v2)TTE

(22)

(23)

1.4

Mindlin-Cattaneo

5 a ^

^-^ 1.4 <

y »8-^=o.

. o]

9y\ \Ssy\

(24)

»<qy<jup, (26)

(27)

point 7]- JL^J- ^ ^

collocation point ^)

A] (26)-i-

-§-3, % 1-

^ ^ o ) ^ ^ nH5 a s . collocation

collocation point °fl^i ^] (27)#

collocation point ^

(26)-i-

&•%•<>]

collocation point 7\

14

(25)

collocation point

£°1 ± /# 7}

^ ^ & collocation point

collocation point 5 - 4 ^ ^1 ^l

1 2 3 4 5 6 7 8 9 1 0

i.4.

f/me

4

5

6

3

7

2

1

10

9

8

Ay

y « o H ^

(17)3)- (18)-!:

collocation point

1.4

fe 5 i^ 4-§- 4 (28)

(28)

15

No. of division in contact area,Influence functions,

Initial conditions, etc.I

Set load step variable, r = 1

Choose increment of load by incrementof rigid body displaceme nt, Ax and A

> Start 1 s t iteration, k= 1

> Start from 1 s t collocation point, / = 1

Evaluate incremental shear tractions,Sq and Sq by assuming stick at /

Yes(i.e. Stick )

t = f+ 1

No (i.e. Slip )

Introduce new incremental shear tractions, S q'x and Sq'such that (Sq'x + g/1)2 + (8q'y + g/1)2 = [p pf

Introduce surface displacements, Sux and Suy

evaluate Sq'x and Sq' from{Sux - A x) / (Su - A Y ) = {Sq'x + q}1) I (Sq1'+ qy

M)

qx'{S

Evaluate= Sq1,, +

q

<

t

MX0

1and

and

suchSq'y(Suy

that+ q''- A y ) < 0

Another load step required ?

1.5.

16

iy"l+Sqy{i,k) 5u>Xi,k)~SAy

(29)

, / ^ collocation point, *

1.5

8qy

.x^ Sqy 9J\^:

JV fe- 15-18

t ^

5.

-§-^^r Mindlin4

c<\y\<b

\y\<c(30)

o .S .^ 2P/nb,

^i.6°flfe- ^ (30)^]

, 0/AiP = 0.53.

#184 H

091

17

0.0-0.5

- Exact solution- Numerical result

0.0

y/a0.5 1.0

1.6. Mindlin-Cattaneoxr^H

x ^ y

1.4

x ' S - ^ ^ .

7}

, q> = ±

= 0.3

a 7> ^

gv-71-

2, 3, 4, 6, 8

0.8^1

nfl

18

0.5

- 0.0

-0.5

0.5

0.0

O-5"-0.51

0.5

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0y/a y/a

(a) at point 2. (d) at point 6.

-0.5. -0.5.-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

y/a y/a(b) at point 3. (e) at point 8.

0.5, 1 0.5 r

-0.5 -0.5-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

y/a y/a(c) at point 4. (f) at point 10.

19

o

1.0

0.8

0.6

0.4

0.2 -

0.00

-

--,-

I

o

+ Qx ^ y

j \\

0 0.2 0.4 0.6 0.8 1.0

sliding)* °i<L

» 0.2, 0.4, 0.6, 0.8 f A

(gross

Qx2 + Qy

2 = (/i/>)2l-

Q/ =

20

a 2 + Qy2

fe collocation point)7>

^ 3.7]}

1.4 o] ^ ^ ^ 2

3 oflAi e y = 0

(self-equilibrium)^

, qy

(14) SE^ (15)1-

l H7l7>

1.9

ZL& 1.9

1 0 oflAio] ^ f ^

9X4. ^ l ^ ^ r ^ ^ 2

21

%•%<& n.% 1.7(f)7f

10 ]% ^4) 4 1

debris)7>

ZL

# Archard[17]7>

a Ai p ^ ^ - i : ^ ^ ^ o>e}lo| ^ ^ ^<g ^

7]511-

1 * 3

OH- 3 ^

fe 2 *}-€ ^ ^ ^ ^ ^ Flamant Potential •§:

22

<>l-8-S>7m-[19], Muskhelishvili Potential

23

s.l)-ir *iHt ^°ll:l-(wear debris)

(system)^

} & ^ 4 i f e Archard[21], Mindlin ^[22] , Johnson[23]

^l #^^-cfl7(1 ^(stress intensity factor)

°H

24

cfl

2.

1 A S 5 . ^11-^ ^^-5} ^-(scalar product)^ ^

SE

(31)

i fe- l"(collocation points)

Si

2.1

A]

2.1 4 1 ^ a/b = 0.5

nflo] 2.2

25

26

3.

1.3 ofl>H

^ collocation point)* 5>7fl «>^, Flamant

(32)

K

rX, =

5-1

m=\

5-1 ,

m=\

(34)

m

collocation point

collocation point

^ 71 ^oo

# M"B]-\ft4. ^ ,

collocation point

914. > C

((

- d)02

27

(36)

((* - md) - d)©2

rf)6>3 + 2yLx -

\ ( 3 8 )

+ ((x - ffjrf) -d)L2+ ((x - md) + d)L3}

0, = tan"1 ((x - mrf)/^), 02 = tan"1 {((x - md) - d)jy), 6>3 = tan"1 {((x - md) + d)/y},

Lx = log((x - md)2 +y2),L2= log|(x - md) - df + y1} L3 = log|(x - md) + df + y2 }.

S.5L <£#$.%<*) $& Airy ^-

I 4 ii 3.)

^el(Bueckner

-^(traction free) S ^ # ^^*>7l ^ * H 0 °1 S]£-S-

2.3

28

p(xm) or q(xm)

p(x) or q(x)

2.3. o]

A j= n A j

= JnK +K'U

(y\s')ds' +JBy. (s')k^ (y',s')ds'

(39)

(40)

, a2--fS. 1)4

vector bx-, by-7\ 5 ^

Burgers vector

SL-fS. 11)^.^4 Burgers

= x'

Kernel

l - o H G &

fe y\ J = N H ^ 7)

D 1

(39)^

q (39)

I ^ -S-^

^f^ 3.-?-=.

(40)

fe 4-8-4

:^ = A\ sin 6 + A-± cos 9 - A3 sin 20 (41)

29

$ = £, sin 2 0 + B2 cos2 0 - B3 sin20 , (42)

l 26-s\n20) (43)

9-sm29). (44)

A, ^ 5,-(i=l,2,3)fe 4

, ^ = G] cos 0 + G2 sin <9 (45)

A2 = -G3 sin <9 + G4 cos9, B2 = G3cos9 + G4sin0 (46)

(47)

G! = x^ 2/r,2 - 4(y - s)2 /rt4 + 2/r2

2 + 4(y2 + s2 )fr24

+ 32sy(y + s)2/r26}

G2={- 2(y - s)/r{2 + 4(y - sf /rf + 2(y - s)/r}

- 4<y + s)(y2 + 5sy -s2)/r$ + 32sy(y + s)3 /$ }

G3 = x{- 2/r,2 + 4(y - s)2 /r? + 2/r22

- 3s2 )

G4 = fay - s)/r? - 4(y - j)3//J4 - 2(3^ + 5s)/r22 -

s)(y2 + 34sy + 9s2 )/r24 - 32sy(y + sf / 4}

G5 = {- 2{y - s)/r,2 + 4(y - sf /rf + 2(y - s)/r?

- 4(7 + s)(y2 -6sy + s2 )/r24 - 32sy(y + s)3 /r2

6

r?

G6 = x{- 2/r,2 + 4(y - 5 ) 2 / n4 + 2/r2

2

- 4{y2 + 4sy + s2)/r24 + 32sy(y + s)2/r2

6

2

(53)

30

rl2=x2+(y-s)2,

G, ~G«1- 4 (41)^£) (44)°fl

(54)

(55)

(54)4

= rxyr = 0). t!:^, 3 (54)4 (55)5.

I f^lrf«+ f5(«)t(v,tt)rfw = /(v), ( -1<V<1) (56)-1 -1

(56)4 ^ - ^ ^° i ^ ^

^Hfloluf ^^Sfl# ^ ^ §1^- ^-f7f § 4 . ^ 1 4 Jacobi 4 ^ " ^ 4

function)* ^l-g-«H ^ H ^ ^ [29]^-S. ^ ^ ^ Si 4 .

2.3 4 £°1 5^°1 yJr^t> ^ ^ ^ 4 - B - ^ ^ ^ ^ 1 3 5UoL ^ :

§ ^ } £ S , B(u)M: 4 ^ - 4 ^°1 ^T-^lf-^4 -rrW(bounded)

31

B{u) = 5P(M) W(U) = <F{u (57)

fe(w = -1). Jacobi

v _

M/=cos(^—T^ » vy=co

(58)

(55)^

^(integration point)0lcf. ^ ^ - ^ (54)3}-

6)«fl

2V2G

(59)

(60)

(1)

32

/2£*(62)

2.4

0.0 0.2 0.4 0.6 0.8 1.0

2.4. eH:^ 371 i Si*!:

33

sit!: ^ tb# ^ inclusion

precipitate ^ ^ ^

2-5 M^^r

^ 7$J>-7\ H ^ 2.3

°lfti

0° ~ 50°

«- cfi

2.4

0.305, 0.314, 0.323, 0.378

2.3

2.5(a)

= 0.005, 0.56, 0.85, 0.99)

3-g-tt ^ f

/ > « = (63)

34

(X10"2)

-0.0.00 0.01 0.02 0.03 0.04

a I W

(a)*/

(X102)

000.00 0.01 0.02 0.03 0.04

a I W

2.5. (9=0°).

2.5(a)

K,lPm^a 3

K,

7}*]v]

fe- //w 7> ^

35

(X102)0.1

0.0

-0.4

- O 5o

!Crack

-*-" " '

Closure

0=0°

0=10°

^=30°

5=50°

2a/w (X10-2)

(X102)0.6

(X10"2)

2.6. -S- = 0.005).

= 0.005, 0.56, 0.99, 0.85

36

$14.

2.6(a)

2.5(a) ^ H ] j l ^ ^ > ] ^ g o ^ ^ ]

6(b)

^-S.^ 2 -32] 3-^(K;,)7} X]H ^ oj-

^ 4 * 1 ° 1 woV*M yBHr ^ - f l - ^ ^ ^$14. ^ S t^ " ^ 0 ! °J<H47l ^

(2)

37

l/w = 0.005

= 0.56

O-0.5

-1.0

7Rigid BodyDisplacement, A

Time

2.7.

. o)

1 H711-

2.7 o f l ^

38

2.7

43Cf.

2.7 7^o}7>

2.7

= 0.001 = 0.56 « 1 ^ ^= 0°, 10°, 30°,

2.8(a)

= 0 <a

39

(X10~3)

(X10"3)

Time

-1.0

-1.0Time

2.8.

^ ^-(at o/w = 0.001, //w = 0.56).

^ ^ A I . ^ . E l b e r

40

(X102)

(X102)

Time

(a) II w = 0.93

Time

(b) llw = 0.005

-1.0

whenp at//iv = 0.93

-1.0

2.9. l/w °\] 4 1 -

0.001, 0= 30°).

alw =

2.8(b)*l|

2.7

3.7] 7} 4 ^

41

2.9(a) ^

0.93 ^ 0.005)0)1

2.9 n e l 2.7 <fl>H£. 1"

= 0.93, H ^ 2.9(a))7|-

0.005,

nfl ^.

42

1.

3.1

3.1

10)

3.1 3.3

3.1 ^ 2)-i-

7] Sj - ^H.^4 514 A|-O]o]

3.1

LVDT(Linear Variable Differential Transformer, -L^ 3.1 £] 7)-

90° 3.1

43

PC

Fretting Wear Tester

3.1.

9:

S. % 7: LVDT, 8: I - * ,

i£^) , 10:

fe 2 3.1

3.1

2.

3715}-

44

1?R 2.5

R5

(R15

(a) (b)

3.2.

3.2 (a))4

3.2 (b))A

^ 2.5

^ 15 mm 2. ^ &

3.2 (a)

i . 7J- Type 304

15 Azm, 400

Hz

^- 30 N £fe 50 N,^: 3711 *M

30

^ 300,000

714)71

n

45

25

| 2 0

J2- 1 5

10

a<Q. 0

;;;• ;;;;;S]ip:range

0.0 0.5 1.0 1.5 2.0 2.5 3.0Number of cycles (X 105)

3.3.

3.3 ^llfe ^ # ^ ^ j ^ ^ ^ r 20 N, ?M ^ . ^ 14 Mm SL

s ] ^ ^ 300,000 S ^ t i : ^ ^ ^ f 1 ^ ^ 71 - ^

:71 ofl

3.3

7]?>(300,000 5] S]

# 400 im A

± 50

400

46

ft

£)J1

40 tun

ft^

O|«fl

3.

MITUTOYO ^ } ^ MF1020TH ^- 3 7 ) 7 } 200X100 mm2 °}JL,

^ S S r 3 «H, 5 Hfl, 10 «!!•§:•§•

3.4. #

47

(b)

15

3.7) (a) 30 N, (b) 50 N

-S- 2.5 mm).

(a)

^ 3.6.

(b)

50 N,400

l l - (a) 2.5mm, (b) 15 mm.

200

. ^ 20°C <^] i (3 + 0.02L; L

3.4 *Hfe1 5

l 30 N

15

l - PC

3.5

50 N

3.6 (a)

3.6

2.5 mm 15 mm

400

•§••§•

CCD

48

3.6 ^ H ^. 15

2J-o.JE.3-

n>

2.5 mm o^

5>iO.H.S.[7]

stylus

^ MITUTOYO AH

. ^ ^ a . £ . ^ P profiled

^ £ f e 0.5 mm/min

stylus

fe 80 A)

3.7

5.0

3.7.

0.2 0.4 0.6 0.8Axial length (mm)

1.0

49

4. n l ^

7\. 7fliL

]o>£lJL $£4[37-39]

ZL ^-S| f-o]

t71 ^

^1 [37,39]

Cattaneo ) [ ] ,

514.

50

o] 5>Jt)-[41,42].

stylus)*

O}^- X\o\) cgTfl £ j - 2

3.7 Waterfall

Chart ^ ^ ! ^

^- itj-e* O)A> i=(|olBi7*

0.0005

^ 0.001

c V

71^717* ^

51

(l) *

^^(Fourier Transformation)*

fe 2

"&WM > ^ X-] rfl^ -f-4 ^ El (Low-pass Filter)

| A] ^V Ho

Frequency)

10Axial Direction

0 0

20

10

Transverse Direction

3.8.

30 « i ^ , 20

3.8

52

°3 ( I n v e r s e Fourier Transformation)^;

71

o]^ 4 ^ - 4 ^"^r 3!-thr(Window Function)

^ "Windowing"[43] 7]^^ ^ g ^

(64)

£ fl (^) ( ^ ) ) q 63.2%

(2) *M ^-^nf'i^-S] 3

^ y ^ yoH

53

Raw data ofthe surface

2 dimensional FFT

Determine Cutoff frequency

Low-pass filtering

2 dimensional Inverse FFT

Exponential windowing

Select datum (Fh or other)

Calculate wear volume

Graph results

rEnd

3.9.

7l| S)

A S . 0.0005 |im

y ^T "o1"^—^ 10 nm 2-1 ^-§--5.

ic Spline)-=r

MatLab®(version 5.3)[44]-§:

54

. °H 4-8-^ 3.9 4

3.12

711)

3.10

3.11

3.io

3.12 (a)°t|Ai-e x

3.12

3.10

^ . 24

3.12 <^l^i^

^- y

3.12(a)

2000

1 sfl

0.5

Axial length(mm)

150200

Transverse length(jim)

3.10.

55

0 5 10 15 20 25 30 35 40 45 50

3.11.

10 12

150100

Transverse length(jim)

(a)

10S

•8

3.12. ZT% 3.10 2] n}

50100

150200

0 Transverse length(jim)

(b)

jf:

56

(2) 4 1 JjJ-iq ?$<& *] K

3.12 (b)£] ^ - f oil ^ (64)4 ^ £ "Windowing"^

^ 3 1 ^ € 4 1 -r-^fe ^ 45.1237X10'6 mm3 4 46.4026xl0"6 mm3 A

, "Windowing" £) ^-g- <^<>fl 4 € - 4 1 T ^ ^ I * H f e 2.8% ^ £ 5 . ^ 1 He]

0.76 nm •§• T ^ ^ ^ I - 5 1 4 . -¥-3i| TJl-a- l 1 4 "Windowing"^]

7}

^- nfl "Windowing"^

Windowing" * J s | ^ ^ A * > 4 J L ^ 4 ^ ° ! 4 A ^ H-^-Zl^0!]^ "Windowing"

3.9 ^-2:).

5a* ^ $1x4. H ^ 3.13 «11 K £ N

3tl 0.76

H ^ 3.13 A

. A: a t *

3.13

3.13 4 £ £ |x>* ^«^H 4 1

^ Ra ? t ^

* 41

57

o]

Estimated regionof wear only

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

3.13.

58

2000

51 oi

• % •

3.7}2]- o}6]}

- 1 71

SEM

59

s 2 s a

(1) Johnson, K. L., 1989, Contact Mechanics, Cambridge Univ. Press.

(2) Smith, J. O. and Liu, C. K., 1953, "Stresses due to Tangential and Normal Loads on an

Elastic Solid with Application to Some Contact Problems," J. Appl. Meek, Vol. 20, pp.

157-166.

(3) McEwan E. , 1949, "Stresses in Ealstic Cylinders in Contact along a Generatrix,"

Philosophical Magazine, Vol. 40, pp. 454-460.

(4) Sackfield, A. and Hills, D. A., 1983, "Some Useful Results in the Tangentially Loaded

Hertzian Contact Problem," J. Strain Analysis, Vol. 18, No. 2, pp. 107-110.

(5) Hills, D. A. and Nowell, D., 1994, Mechanics of Fretting Fatigue, Kluwer Academic

Publishers.

(6) Kim, Hyung-Kyu and Lee, Soon-Bok, 1997, "Crack Initiation and Growth Behaviour

of Al 2024-T4 under Fretting Fatigue," Int. J. Fatigue, Vol. 19, No. 3, pp. 243-251.

(7) Ciavarella, M., Hills, D. A. and Monno, G., 1998, "The Influence of Rounded Edges

on Indentation by a Flat Punch," Proc. Instn. Mech. Engrs., Part C, Vol. 212, pp.

319-328.

(8) ^ ^ } , ol^-g-, 1996, "^-^1 ^ - g - ^ 5-ailSl * § # 2 ] 3 s h " £ i m 7 ] « 5 | fe

£ - 3 (A), ^120^, 4 131, pp. 180-188.

(9) Watrehouse, R. B., 1975, Fretting corrosion, Pergamon Press.

(10) Mindlin, R. D., 1949, "Compliance of Elastic Bodies in Contact," J. Appl. Mech., Vol.

16, pp. 259-268.

(11) Cattaneo, C, 1938, "Sul Contatto di Due Corpi Elastici: Distribuzione Locale Degli

Sforzi," Rendiconti dell' Accademia nazionale dei Lincei, Vol. 27, Sen 6, pp. 342.

(12) Hills, D. A., Nowell, D. and Sackfield, A., 1993, Mechanics of Elastic Contacts,

Butterworth-Heinemann Ltd.

(13) Bentall, R. H. and Johnson, K. L., 1968, "An Elastic Strip in Plane Rolling Contact,"

Int. J. Mech. Sci., Vol. 10, pp. 637-663.

(14) Muskhelishvili, N. I., 1958, Singular Integral Equations, Noordhoff, Leiden.

(15) Nowell, D. and Hills, D. A., 1988, "Contact Problems incorporating Elastic Layers,"

Int. J. Solids Struct, Vol. 24, No. 1, pp. 105-115.

60

(16) Private communication with Hills, D. A., 1998.

(17) Archard, J. F., 1953, "Contact and Rubbing of Flat Surfaces," J. Appl. Physic, Vol. 24,

No. 8, pp. 981-988.

(18) Iyer, S. S. and Ko, P. L., 1996, "Finite Element Modeling of Plastic Deformation,

Crack Growth and Wear Particle Formation for Sliding Wear of Power Plant

Components," Flow-Induced Vibration, PVP-Vol. 328, ASME, pp. 369-377.

(19) Kim, Hyung-Kyu, 1997, Behaviour of a Surface Oblique Crack in Fretting Fatigue, Ph.

D. Thesis, KAIST.

(20) Muskhelishvili, N. I., 1977, Some Basic Problems of Mathematical Theory of

Elasticity, Noordhoff, Leiden.

(21) Archard, J. R, 1953, "Contact and Rubbing of Flat Surfaces," J. Appl. Physic, Vol. 24,

No. 8, pp. 981-988.

(22) Mindlin, R. D. et al, 1982, "Effect of an oscillating tangential force on the contact

surfaces on elastic spheres," Proc. Is' US National Congress of Applied Mechanics, pp.

203, New York: ASME.

(23) Johnson, K. L., 1961, "Energy Dissipation at Spherical Surfaces in Contact

Transmitting Oscillating Forces," J. Mech. Eng. Sci., Vol. 3, pp. 362.

(24) 3*lfl-, 1999, " f ^ W ^ H € #&*W 3-8-*l eJ-Sr^SH ^t t ^ #

-5-^," tfltlrTMl^slfe^A^, *fl23 , aflSSl, pp. 801-813.

(25) Nowell, D. and Hills, D. A., 1987, "Open Cracks At or Near Free Edges," J. Strain

Analysis, Vol. 22, No. 3, pp. 177-185.

(26) Kim, H. -K. and Lee, S. -B., 1996, "Stress Intensity Factors of an Edge Crack

subjected to Normal and Shear Tractions," Theo. Appl. Fract. Mech, Vol. 25, No. 2, pp.

147-154.

(27) Dunders, J. and Sendeckyj, G.P., 1965, "Behavior of an Edge Dislocation near a

Bimetallic Interface," J. Appl. Physics, Vol. 36, pp. 3353-3354.

(28) Bueckner, H. R, 1958, "The Propagation of Cracks and the Energy of Elastic

Deformation," J. Appl. Mech., Vol. 80, pp. 1225-1230.

(29) Erdogan, F. et al., 1973, Methods of Analysis and Solutions of Crack Problems,

Mechanics of Fracture 1, G.C. Sih ed., Chapter 7, Noordhoff International Publishing,

Leiden.

(30) Krenk, S., 1975, "On the Use of Interpolation Polynomial for Solutions of Singular

61

Integral Equations," Quarterly Applied Mathematics, Vol. 32, pp. 479-484.

(31) Suh, N.P., 1977, "An Overview of the Delamination Theory of Wear," Wear, Vol. 44,

pp. 1-16.

(32) Suh, N.P., et ah, 1974, "Further Investigation of the Delamination Theory of Wear," J.

Lubr. Tech., Vol. 96, pp. 631-637.

(33) ^ W £| 3 Si, 1998, " ^ ^ 4^11^*1 W>fl « #*1 ^ A o^ <£*$,>•^tt7l^l*l-5j %•%*]%• 9$^7\}n^rj\n fe^], pp. 169-174.

(34) Kim, H. -K. and Lee, S. -B., 1996, "Stress Intensity Factors of an Edge Crack

subjected to Normal and Shear Tractions," Theo. Appl. Fract. Mech, Vol. 25, No. 2, pp.

147-154.

(35) Elber, W., 1970, "Fatigue Crack Closure under Cyclic Tension," Eng. Fract. Mech.,

Vol. 2, pp. 37-45.

(36) 3 1 ! T ? £] 5S1, H e U ^ P r ^ ^ ^ 1 / l i t , KAERI/TR-1570/2000,

(37) S. Fouvry, P. Kapsa and L. Vincent, Quantification of fretting damage, Wear, Vol. 200,

pp. 186-205, 1996.

(38) P. De Baets, K. Strijckmans and A.P. van Peteghem, Characterization of the fretting

wear of unlubricated steel surfaces based on the comparison of wear results obtained

by different methods, Wear, Vol. 208, pp. 169-176, 1997.

(39) M. Kalin and J. Vizintin, Use of equations for wear volume determination in fretting

experiments, Wear, Vol. 237, pp. 39-48,2000.

(40) K.H. Cho, T.H. Kim and S.S. Kim, Fretting wear characteristics of zircaloy-4 tube,

Wear, Vol.219, pp.3-7, 1998.

(41) 3 # s h ^ ^ > ^-8-^. ^ W ^ ^ ^ ^ U - i -^ ^ • • g - % ^ - ^ ^282) ^7fl*}-^rfl2l,pp. 300-305, 1998.

(42) ^ # * > , ^ Q , £ - 8 - ^ , ^ ^ 1 ^ W^-§r ol-g-^1- v}^

5\ fe^-^, ^116^1 42$., pp.33-137, 2000.

(43) D.J. Ewins, Modal Testing: Theory and Practice, pp.121, Research Studies Press,

Great Britain, 1984.

(44) Math Works Inc., User's Manual for MatLab® V5.3 Rl 1, U.S.A., 1999.

62

Square Punchy tfl«

BIBLIOGRAPHIC INFORMATION SHEETPerforming Org.

Report No.Sponsoring Org.

Report No.Standard Report No. INIS Subject Code

KAERI/RR-2078/2000

Title/Subtitle Development of Contact Failure Analysis Technology-F i r s t Year(2000) Report-

Project Managerand Department

Kim, Hyung-Kyu (Fuel Manufacturing Technology DevelopmentTeam)

Researcher andDepartment

Yoon, Kyung-Ho; Kang, Heung-Seok; Song, Kee-Nam (FueljManufacturing Technology Development Team) j

PublicationPlace

Taejon Publisher KAERIPublication

Date2001. 1.

Page p 62 111. & Tab. Yes( V ), No ( ) Size 26 Cm.

Note

Classified Open( V ), Restricted(_ Class Document

Report Type Research Report

Sponsoring Org. Contract No.

Abstract(15-20 Lines)

Contact tractions are affected by the geometry of contacting bodies. In thepresent research, square punch, wedge and cylinders are considered as the geometry.Among the geometry, a square punch with rounded corners is basically used. Normaltraction profile is obtained in the case of the rounded punch, and shear tractions areivaluated under the partial slip regime by using the influence function method.

Multiplication of the shear traction and slip displacement in the slip region of thecontact provides the friction energy dissipation from the contact. Since the trace of theshear force influences the amount of the dissipated energy, a desirable trace of theshear force may be supposed to reduce the energy dissipation. Internal stresses are:valuated from the contact normal and shear tractions, which are to be used for

calculating the stress intensity factors of a surface breaking crack emanated from thecontact surface. The stress intensity factors, K\ and Kn, are investigated during thecyclic shear. It is found that a period of crack opening exists during a shear cycle,which is effective for crack growing. So, to reduce the period can be a method forrestraining the cracking failure. On the other hand, there can exist a desirable shape ofthe contacting body, which can restrain the cracking failure. In the experiment, frettingwear tester is used with the specially designed specimen. Wear of the contact surfaceare observed in detail, which shows typical shape following the partial and gross slipregimes. An algorithm for evaluating the wear volume is newly developed using thesignal processing technique and the Fast Fourier Transform (FFT).

Subject Keywords(About 10 words)

Contact Failure, Contact Tractions, Punch with RoundedCorners, Partial Slip, Influence Function Method, Friction Energy jDissipation, Stress Intensity Factor, Cyclic Shear, Fretting Wear|Tester, Wear Volume I