31

1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic
Page 2: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  1  

1.0  Introduction  

The  China  Study,  more  formally  known  as  the  China-­‐Cornell-­‐Oxford  study,  has  

been  described  as  the  most  comprehensive  study  of  nutrition  ever  conducted.  1  The  

purpose  of  the  China-­‐Cornell-­‐Oxford  study  was  to  investigate  the  diet,  lifestyle,  

anthropometry,  blood  chemistry,  and  mortality  rates  of  sixty-­‐nine  counties  in  twenty-­‐

four  different  provinces  in  China.  The  primary  concern  of  the  investigators  was  to  

compare  the  study  areas  with  every  other  study  area  and  the  uniqueness  of  this  large  

epidemiological  study  revolved  around  the  predominantly  plant-­‐based  diet  that  is  

consumed  in  rural  China.  In  2005,  T.  Colin  Campbell,  professor  emeritus  of  nutritional  

biochemistry  at  Cornell  University  and  one  of  the  lead  investigators  of  the  China-­‐

Cornell-­‐Oxford  study,  authored  the  book  The  China  Study.  This  book  written  by  Dr.  

Campbell  and  his  son,  Thomas  M.  Campbell  II,  details  various  findings  of  his  scientific  

research  and  is  named  after  the  China-­‐Oxford-­‐Cornell  Diet  and  Health  project  –  an  

epidemiological  study  in  rural  China  and  Taiwan  funded  by  the  University  of  Oxford,  

Cornell  University,  and  the  Government  of  China.  1  Based  on  findings  from  

experimental  animal  studies  during  his  graduate  studies,  the  large  human  study  on  

dietary  patterns  and  disease  in  rural  China  and  Taiwan  and  other  published  research,  

Dr.  Colin  Campbell  claims  that  the  research  implies  the  same  conclusion:  consumption  

of  animal-­‐based  foods  is  associated  with  chronic  disease  while  the  opposite  is  true  for  

consumption  of  predominantly  plant-­‐based  foods.  1    

2.0  Study  Design  

  The  China-­‐Oxford-­‐Cornell  project  had  an  ecologic  study  design  –  an  

epidemiological  study  that  involves  comparison  of  populations  rather  than  

individuals.  Therefore,  analysis  of  the  results  involved  calculation  of  county  averages  

for  diet,  lifestyle,  and  disease  characteristics  and  correlation  coefficients  were  

compared  among  counties  rather  then  at  the  individual  level.    Although  using  

aggregate  data  is  advantageous  for  population  studies  due  to  its  convenience,  

limitations  of  this  study  design  include  its  high  susceptibility  to  confounding.  2  

Associations  between  mortality  rates  and  diet  observed  using  aggregate  data  might  

Page 3: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  2  

not  necessarily  be  observed  when  comparisons  are  made  at  the  individual  level.  

Therefore,  these  studies  are  generally  used  as  hypothesis-­‐generating  studies  to  be  

further  tested  in  studies  using  data  at  the  individual  level.  Furthermore,  using  county  

averages  in  place  of  individual  data  significantly  reduced  the  sample  size  of  the  China  

Study,  thereby  reducing  the  statistical  power  of  the  study.  Therefore,  although  

approximately  8,307  adults  in  sixty-­‐nine  counties  were  surveyed,  only  sixty-­‐nine  data  

points  are  provided  for  each  variable  and  mortality  rate.    

  In  observational  studies  such  as  the  China  Study,  the  extent  of  the  

generalizability  of  the  results  is  important  and  highly  dependent  on  sample  size  (to  

control  for  random  error)  and  the  sampling  strategy  employed  by  the  investigator,  

which  will  determine  how  representative  the  sample  is  of  the  population  of  interest.  

Sampling  in  the  China  Study  involved  random  selection  of  sixty-­‐nine  counties  out  of  

2400  in  rural  China,  which  are  fairly  representative  of  rural  China  and  are  distributed  

throughout  China.  Within  each  of  these  counties,  two  xiangs  were  also  randomly  

selected,  followed  by  random  selection  of  one  or  two  villages  in  each  xiang  to  be  

surveyed.  An  official  registry  of  residences  was  used  to  randomly  select  50-­‐60  

households  and  one  individual  per  household  (age  35-­‐64)  was  then  randomly  selected  

to  be  interviewed.  Approximately  equal  numbers  of  males  and  females  were  

interviewed.  Out  of  all  households  randomly  selected,  half  were  asked  to  participate  in  

the  three-­‐day  dietary  survey  used  to  gather  information  on  dietary  patterns.  Random  

sampling  is  the  gold  standard  for  ensuring  generalizability.  The  cluster  sampling  

approach  used  by  the  investigators  introduces  some  error,  however,  cluster  sampling  

is  very  useful  for  population  level  studies,  especially  when  the  population  is  widely  

dispersed  and  it  would  be  impractical  and  very  costly  to  list  and  sample  from  the  

entire  population.  Limitations  include  the  fact  that  no  response  rate  was  provided.  

The  response  rate  affects  the  validity  of  inferring  that  the  sample  is  representative  of  

the  population  since  individuals  who  refuse  to  participate  in  the  study  tend  to  be  

different  than  those  who  do  agree  to  participate  and  this  introduces  bias.  

Furthermore,  since  several  individuals  in  China  refused  to  provide  a  vial  of  blood  for  

biochemical  analyses  due  to  cultural  reasons,  blood  from  each  study  area  was  pooled  

Page 4: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  3  

to  provide  a  large  enough  sample  for  analyses  to  be  conducted.  Unfortunately,  this  

introduces  the  potential  of  confounding  since  aggregate  data  is  used  here.  Although  

the  pooled  blood  samples  collected  were  sex-­‐specific,  the  dietary  data  obtained  from  

the  three-­‐day  dietary  record  was  not.  This  also  increases  the  chance  of  potential  

confounding  of  results  due  to  the  fact  that  dietary  and  lifestyle  patterns  among  

females  may  be  markedly  different  from  patterns  observed  among  males.    

  In  addition  to  the  possible  errors  introduced  and  described  above,  which  affect  

the  external  validity  of  the  study  and  therefore  the  ability  to  make  any  inferences  

about  the  target  population  of  China  from  the  sample  data,  bias  may  also  have  been  

introduced  due  to  measurement  error.  For  example,  the  three-­‐day  diet  record  may  not  

be  representative  of  the  sample  population  due  to  the  fact  that  individuals  tend  to  

consciously  or  subconsciously  alter  their  eating  habits  during  such  dietary  surveys  

which  increases  the  potential  for  systematic  bias  of  the  results.  There  are  methods  of  

adjusting  for  possible  measurement  error  in  dietary  surveys,  such  as  the  calculation  of  

EI:  BMR  ratios  to  identify  potential  underreporting  and  over-­‐reporting  of  energy  

intake.  3  This  method  may  be  used  if  individual  data  is  available  but  is  difficult  when  

only  aggregate  data  is  available.  Furthermore,  the  use  of  average  values  to  describe  

the  consumption  of  foods  and  nutrients  in  each  study  area  is  calculated  through  the  

use  of  food  composition  databases  that  provide  average  nutrient  values  for  each  food.  

As  a  result,  the  variation  in  nutrient  composition  of  foods  cannot  be  taken  into  

account.  However,  this  is  a  limitation  of  population  level  studies  measuring  dietary  

intake  and  the  logistics  of  the  fieldwork  simply  do  not  make  it  feasible  to  overcome  all  

possible  measurement  error.    

  Last  but  not  least,  the  ecologic  or  correlation  study  design  of  the  China-­‐Cornell-­‐

Oxford  study  means  that  the  analysis  of  the  findings  involved  calculation  of  

correlation  coefficients  between  the  mortality  rates  and  the  various  biochemical,  

dietary,  and  behavioural  factors.  The  most  important  rule  to  note  here  is  that  

correlation  does  not  equal  causation;  in  other  words,  establishing  a  correlation  

between  a  dietary  variable  and  disease  mortality  rate  is  not  a  sufficient  condition  to  

establish  a  causal  relationship.  The  correlation  coefficient  is  a  measure  of  the  strength  

Page 5: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  4  

of  the  linear  association  between  the  two  variables;  however,  the  causes  of  this  

correlation  may  be  indirect  due  to  the  presence  of  some  other  confounding  variable.  

Furthermore,  some  statistically  significant  correlations  may  have  occurred  simply  due  

to  chance.  Thus,  any  claims  made  based  on  the  existence  of  an  unadjusted  correlation  

coefficient  are  unjustifiable  and  any  information  obtained  from  a  geographical  

correlation  study  must  be  interpreted  with  caution  and  supported  by  other  scientific  

research  that  demonstrates  the  biological  plausibility  of  such  a  relationship.  No  causal  

inference  can  be  made  based  on  the  observed  relationships  due  to  the  observational  

nature  of  the  study  and  especially  because  the  mortality  rate  data  was  collected  prior  

to  collection  of  the  dietary  data,  therefore  the  outcome  and  risk  factor  sequence  is  out  

of  order.    

3.0  Methods  of  Secondary  Data  Analysis  

Secondary  data  analysis  was  conducted  using  data  collected  for  the  China-­‐

Cornell-­‐Oxford  Project  in  1989-­‐1990  and  published  in:  

Chen J,  Peto R,  Pan W,  Liu B,  Campbell TC.  Mortality, Biochemistry, Diet, and

Lifestyle in Rural China: Geographic study of the characteristics of 69 counties in mainland China and 16 rural areas in Taiwan:  Oxford University Press;  2006.  

3.1  Objectives  

The  primary  objective  of  the  secondary  data  analysis  was  to  determine  the  

relationship  between  a  plant-­‐based  diet  versus  an  animal-­‐based  diet  and  chronic  

disease  mortality.  Data  collected  by  the  1989-­‐1990  survey  was  used  to  evaluate  the  

association  between  chronic  disease  and  diet,  focusing  specifically  on  the  following  

diseases  and  dietary  variables:    

“Diseases  of  Affluence”:  

• Obesity  (Body  Mass  Index  kg/m2  entered  as  a  continuous  variable  from  

measured  height  and  weight)  

• Diabetes  Mortality  Age  35-­‐69  (stand.rate/100,000)  (ICD9  250)  

Page 6: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  5  

• Hypertensive  Disease  Mortality  Age  35-­‐69  (stand.rate/100,000)(ICD9  401-­‐5)  

• Cancer  Mortality  (all  malignant  neoplasms)  Age  35-­‐69  

(stand.rate/100,000)(ICD9  140-­‐208)  

• Lymphoma  and  Myeloma  Mortality  Age  35-­‐69  (stand.rate/100,000)  (ICD9  

200-­‐3)  

Select  Dietary  Variables*:    

• %  Energy  from  Fat  (for  ref.  man  65  kg**)  

• %  Energy  from  Carbohydrates  (for  ref.  man  65  kg)  

• %  Energy  from  Protein  (for  ref.  man  65  kg)    

• %  Animal  Food  Intake  (for  ref.  man  65  kg)  

• %  Plant  Food  Intake  (for  ref.  man  65  kg)  

• Processed  Starch  and  Sugar  (g/day/ref.  man  65  kg)  

• Fiber  (g/day/ref.  man  65  kg)  

• Legumes  (g/day/ref.  man  65  kg)  

• Light  Coloured  Vegetable  Intake  (g/day/ref.  man  65  kg,  fresh  wt.)  

• Green  Vegetable  Intake  (g/day/ref.  man  65  kg)  

• Fish  Intake  (g/day/ref.  man  65  kg)  

• Meat  Intake  (g/day/ref.  man  65  kg)  

• Milk  Intake  (g/day/ref.  man  65  kg)  

• Eggs  Intake  (g/day/ref.  man  65  kg)  

• Added  Vegetable  Oil  (for  cooking  etc.)  Intake  (g/day/ref.  man  65  kg)  

• Vitamin  A  Intake  (retinol  equivalents/day/ref.  man  65  kg)  

• Vitamin  E  Intake  (mg/day/ref.  man  65  kg)  

• Vitamin  C  (ascorbic  acid)  Intake  (mg/day/ref.  man  65  kg)  

*  Dietary  variables  were  obtained  from  the  household  three-­‐day  weighed  food  intake  

diet  survey.  

**  Food  intakes  were  standardized  to  intake  per  ‘reference  man’,  defined  as  a  male  

aged  19-­‐59  years  old,  weighing  65  kg  and  undertaking  very  light  physical  activity.  4  

Page 7: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  6  

Select  Variables  from  Laboratory  Measurements  (Red  Blood  Cell,  Plasma)  and  Self-­‐

Reported  Diet  Questionnaire  Responses:  

• RBC  Total  Lipid  n-­‐6  Polyunsaturates  (%  of  total  fatty  acid  by  wt.)  

• RBC  Total  Lipid  n-­‐3  Polyunsaturates  (%  of  total  fatty  acid  by  wt.)  

• RBC  Total  Lipid  Eicosapentaenoic  Acid  (EPA)  (%  of  total  fatty  acid  by  wt.)  

• RBC  Total  Lipid  Docosahexaenoic  Acid  (DHA)  (%  of  total  fatty  acid  by  wt.)  

• Plasma  Total  Cholesterol  (mg/dL)  

• Animal  Fat  Intake  (g/day)  

• Vegetable  Fat  Intake  (g/day)  

3.2  Statistical  Analyses  

Linear regression analyses were performed with age-standardized disease mortality

rate the dependent variable and each dietary variable evaluated separately in models as the

independent variable. Multiple linear regression was then performed, adjusting for potential

confounding variables and other dietary variables. All nutrients were adjusted for total

energy using the nutrient density approach or by entering total kilocalories as an additional

covariate. Nutrients that were not normally distributed were evaluated as categorical

variables in linear regression, using a value between the mean and the median as a cut-off

to distinguish between low consumers versus high consumers. Mortality rates from the

1989 survey were used in regression analyses, stratified by sex. For each study area the

causes of death were obtained by a retrospective review undertaken in 1989 and cause of

death was coded according to the International Classification of Diseases version 9.0

(WHO ICD-9). The mortality rates used were age-standardized for particular age ranges,

calculated as the unweighted average of the component five-year mortality rates (i.e., 35-

39, 40-44, …., 65-69 for the age range 35-69). 4 Statistical significance was set at a p-value

of less than 0.05.  

 

 

 

Page 8: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  7  

3.4  Study  Location

 

Figure  1.  http://webarchive.human.cornell.edu/chinaproject/images/Map.GIF  

C Shanxi (!"!"!"!"####) CB Huguan ($%) CC Jiangxian (&') CD Jiexiu (())D Henan (*+#*+#*+#*+#) DA Shangshui (,-) DB Linxian (.') DC Songxian (/')F Jilin (0.#0.#0.#0.#) FA Changling (12)G Heilongjiang (345#345#345#345#) GA Baoqing (67)J Anhui (89#89#89#89#) JA Zongyang (:;) JB Qianshan (<!)M Jiangxi (5"5"5"5"####) MB Lean (=8) MC Nancheng (+>) MD Xiajiang (?5)N Hunan (@+#@+#@+#@+#) NA Linwu (AB) NB Mayang (C;) NC Qiyang (D;) ND Yuanjiang (E5)O Hubei (@F@F@F@F####) OA Zaoyang (G;) OB Echeng (H>)Q Guizhou (IJ#IJ#IJ#IJ#) QA Qingzhen (7K) QB Yinjiang (L5) QC Huishui (M-)R Yunnan (N+#N+#N+#N+#) RA Xuanwei (OP)S Sichuan (QR#QR#QR#QR#) SA Wenjiang (S5) SB Cangxi (TU) SC Quxian (V')T Shaanxi (W"#W"#W"#W"#) TA Shanyang (!;) TC Jiaxian (X') TD Longxian (Y')V Gansu (Z[#Z[#Z[#Z[#) VA Tianzhu (\]) VB Dunhuang (^_) VC Wudu (B`)W Xinjiang (ababababcdecdecdecde) WA Tuoli (fg) WB Xinyuan (ah) WC Tulufan (ijk)X Ningxia (lmlmlmlmcdecdecdecde) XA Yongning (nl) XB Longde (op)Y Neimongol (qrsqrsqrsqrscdecdecdecde) YA Xianghuangqi (tuv)

Coastal Provinces (wxwxwxwx)A Shanghai (yxzyxzyxzyxz) AA Shanghai (yx) AB Qingpu ({|) AC Songjiang (}5)B Hebei (*F#*F#*F#*F#) BA Cixian (~') BB Jingxing (�Ä) BC Huanghua (uÅ)E Liaoning (Çl#Çl#Çl#Çl#) EA Xiuyan (ÉÑ)H Shandong (!Ö#!Ö#!Ö#!Ö#) HA Laoshan (Ü!)I Jiangsu (5á#5á#5á#5á#) IA Shuyang (à;) IB Huaian (â8) IC Yangzhong (;ä) ID Jianhu (ã@)

IE Qidong (åÖ) IF Haimen (xç) IG Taixing (éè)K Zhejiang (ê5ê5ê5ê5####) KB Daishan (ë!) KC Jiashan (íì)L Fujian (îã#îã#îã#îã#) LA Zhangpu (ï|) LB Nanan (+8) LC Changle (1=) LD Huian (M8)P Guangxi (ñ"ñ"ñ"ñ"cdecdecdecde) PA Cangwu (Tó) PC Chongzuo (òô) PD Fusui (öõ) PE Rongxian (ú')U Guangdong (ñÖ#ñÖ#ñÖ#ñÖ#) UA Sihui (Qù) UB Panyu (kû) UC Zhongshan (ä!) UD Wuchuan (üR)

UE Shunde (†p) UF Wuhua (°¢)Taiwan (£§£§£§£§)ZA Taipei City, Kaohsiung City(£F, •¶z) ZB Taichung City, Tainan City(£ä, £+z) ZC Chungho City, Fengshan City(äß, ®!z)ZD Miaoli(©™) ZE Hsinchu(a´) ZF Chiai, Tainan(í¨, £+) ZG Penghu(≠@) ZH Nantou, Hualien(+Æ, Ø∞)ZI Kaohsiung, Taitung(•¶, £Ö) ZJ Pingtung(±Ö) ZK Taipei(£F), Ilan(≤≥) ZL Changhua, Pingtung|(¥µ, ±Ö)ZM Taitung(£Ö) ZN Ilan(≤≥) ZO Changhua(¥µ) ZP Tainan(£+)

AAAB

AC

BA

BBBC

CBCC

CD

DA

DB

DC

EA

FA

GA

HA

IA

IB

IC

ID

IEIFIG

JAJB

KBKC

LALB

LC

LD

MBMCMD

NA

NB

NC

ND

OA

OB

PA

PC PDPE

QA

QB

QCRA

SASB

SC

TA

TC

TD

UAUB

UCUD

UE

UF

VA

VB

VC

WA

WB

WC

XA

XB

YA

TW

Survey areas in 1989 survey

Inland Provinces (q∂q∂q∂q∂)

Page 9: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  8  

4.0  Results    

4.1  Dietary  Correlates  of  BMI  

  Linear  regression  was  conducted  to  evaluate  the  association  between  select  

dietary  variables  and  body  mass  index  (BMI),  where  BMI  was  the  dependent  variable  

and  dietary  factors  were  the  independent  variables.  Analyses  were  conducted  

separately  for  males  and  females.    

  Among  men,  percent  of  energy  from  protein  was  found  to  be  significantly  

positively  associated  with  BMI  (B=0.07;  SE=0.01;  p-­‐value<0.001)  (Table  1).  

Furthermore,  it  was  found  that  percentage  of  animal  food  intake  was  negatively  

associated  with  BMI  in  both  men  and  percentage  of  plant  food  intake  were  positively  

associated  with  BMI,  however  the  relationships  were  not  statistically  significant.  

Intake  of  fiber  (g),  adjusted  for  total  energy  by  entering  kilocalories  as  a  covariate,  

was  positively  associated  with  BMI,  however  the  relationship  was  only  significant  

among  women  (B=0.58;  SE=0.27;  p-­‐value<0.05).    For  vegetable  intake,  consumption  

of  green  vegetables  was  significantly  negatively  associated  with  BMI  among  both  men  

and  women  (B=-­‐0.004;  SE=0.001;  p-­‐value<0.01),  however  the  relationship  was  

modest.  Fish  consumption  was  also  found  to  be  significantly  negatively  correlated  

among  both  men  and  women,  however  the  strength  of  the  association  decreased  with  

increasing  consumption  of  fish.  Milk  consumption  was  also  found  to  be  significantly  

positively  associated  with  BMI,  however,  milk  consumption  was  particularly  low  

(Mean=2.3g/day;  SD=16.9)  with  most  counties  having  no  consumption  at  all  and  three  

counties  having  exceptionally  high  consumption  (WA=94.2  g/day;  WB=292.2g/day;  

YA  =  135.2g/day).    

    In  order  to  determine  the  association  between  dietary  fat  and  BMI,  

linear  regression  was  also  performed  where  the  independent  variables  were  oils  and  

fats  measured  by  the  three  day  food  record  as  well  as  erythrocyte  fatty  acid  

composition  from  the  laboratory  analyses  conducted  on  pooled  blood  samples  in  each  

county  (Table  2).  Vegetable  oil  (g/day)  consumption  was  found  to  be  significantly  

positively  associated  with  BMI  in  both  men  and  women  (B=0.03;  SE=0.01;  p-­‐

Page 10: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  9  

value<0.05).    Vegetable  fat  (g/day)  consumption  was  significantly  positively  

associated  with  BMI  among  both  men  (B=0.05;  SE=0.02;  p-­‐value<0.05)  and  women  

(B=0.07;  SE=0.02;  p-­‐value<0.01).  Percentage  of  erythrocyte  fatty  acid  content  as  

omega-­‐3  fatty  acid  was  not  found  to  be  significantly  associated  with  BMI,  and  further  

analysis  of  EPA  and  DHA  omega-­‐3  fatty  acids  did  not  reveal  any  significant  association.  

Erythrocyte  omega-­‐6  fatty  acid  content  was  found  to  be  negatively  associated  with  

BMI  among  women  (B=-­‐0.09;  SE=0.03;  p-­‐value<0.05).    

The  inverse  association  between  percentage  of  kilocalories  from  animal  food  

and  BMI  is  likely  due  to  the  overall  low  average  intake  of  animal  foods  in  general  

(Mean=7.04;  SD=6.89)  versus  overall  plant  food  intake  (Mean=93.0;  SD=6.88).  

Nevertheless,  the  association  was  further  adjusted  for  animal  protein  intake  (to  test  

Dr.  Campbell’s  argument  that  protein,  especially  animal  protein,  is  linked  to  chronic  

diseases),  however  the  inverse  relationship  was  still  maintained.  Thus,  the  indictment  

of  animal  foods  as  a  risk  factor  for  increasing  weight  gain  is  not  justified  based  on  

these  analyses.  However,  it  is  important  to  keep  in  mind  that  the  prevalence  of  

overweight,  based  on  averages  of  each  study  area,  is  almost  non-­‐existent.  The  mean  

BMI  for  both  men  (Mean=21.0;  SD=1.0)  and  women  (Mean=21.4;  SD=1.1)  fell  into  the  

normal  weight  category  based  on  WHO  BMI  classification.  5  Therefore,  the  

combination  of  lack  of  prevalence  of  overweight  and  obesity,  as  well  as  low  animal  

food  consumption  and  a  low  sample  size  due  to  aggregate  data  makes  it  more  difficult  

to  detect  true  associations.  On  the  other  hand,  we  observed  protein  consumption,  

vegetable  oil  and  vegetable  fat  consumption  as  having  statistically  significant  positive  

associations  with  BMI.  In  his  book  The  China  Study,  Dr.  Campbell  claims  that  protein  

and  fat  are  implicated  in  weight  gain,  however  in  this  case  it  appears  plant  foods  and  

vegetable  fats  are  associated  with  weight  gain.  However,  a  limitation  is  that  dietary  

intakes  were  not  adjusted  for  physical  activity  levels  –  a  factor  which  would  likely  

alter  the  associations  we  observe.  

 

Page 11: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  10  

Table  1.  Linear Regression Beta Coefficients (SE) for Each Diet Quality Indicator Separately Evaluated for its Association with BMI (kg/m2).  

Independent Variables Model 1 MALE

Model 2

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

% E Fat -0.007 0.02 -0.01 0.02 % E Carbohydrate -0.0001 0.02 -0.004 0.02 % E Protein 0.07 0.01*** 0.09 0.02*** % E Animal Food Low (0%-5%) High (6%-27%)

-0.35

0.24

-0.41

0.28

% E Plant Food Low (73%-96%) High (96%-100%)

0.23

0.25

0.24

0.29

% E Processed Starch & Sugar Low (0g-1g) High (2g-22.9g)

0.37

0.25

0.41

0.30

% E Fiber Low (4.8g-11g) High (12g-38.8g)

0.39

0.23#

0.58

0.27*

% E Legumes Low (0g-17g) High (18g-104.6g)

-0.32

0.23

-0.12

0.28

% E Light Colored Vegetables Low (0g-148g) High (149g-510.6g)

0.36

0.23

0.66

0.27*

% E Green Vegetables -0.004 0.001** -0.004 0.001** % E Fish No (referent) Low (1g-14g) High (15g-184.7g)

--1.03 -0.55

0.26*** 0.25*

-0.89 -0.59

0.33* 0.32

% E Meat Low (0g-31g) High (32g-104.4g)

0.16

0.23

-0.0002

0.28

% E Milk No (0g) Yes (1g-292.2g)

1.13

0.26***

1.21

0.32***

% E Eggs Low (0g-3g) High (3g-18g)

-0.11

0.23

0.05

0.28

Note.  All  nutrients  are  presented  as  a  percentage  of  total  energy  (E)  intake  or  adjusted  for  total  energy  by  entering  total  kilocalories  as  a  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

Page 12: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  11  

Table  2.  Linear Regression Beta Coefficients (SE) for RBC Fatty Acids and Intake of Fats and Oils Separately Evaluated for their Association with BMI (kg/m2).  

Independent Variables Model 1

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Added Vegetable Oil (g) 0.03 0.01* 0.03 0.01* RBC omega-6 -0.05 0.03# -0.09 0.03* RBC omega-3 0.05 0.07 0.06 0.08 RBC EPA Low (0.09%-0. 55%) High (0.56%-2.09%)

0.004

0.25

-0.12

0.28

RBC DHA 0.03 0.07 0.06 0.09 Animal Fat (g/day) 1

Low (0.2g-5g) High (6g-23.4g)

-0.57

0.23*

-0.43

0.28

Vegetable Fat (g/day) 1 0.05 0.02* 0.07 0.02** Plasma Cholesterol (mg/dL) 0.008 0.010 0.02 0.01

1  Adjusted  for  total  energy  intake  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

Table  3.  Linear Regression Beta Coefficients (SE) for Select Micronutrients Separately Evaluated for their Association with BMI (kg/m2).  

Independent Variables Model 11

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vitamin A (RE/day/ref. man) -0.0006 0.0003* -0.0008 0.0003* Vitamin C (mg/day/ref. man) -0.005 0.002* -0.007 0.003* Vitamin E (mg/day/ref. man) 0.04 0.01*** 0.05 0.01***

Note.  All  micronutrient  intakes  are  adjusted  for  total  energy  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

 

 

Page 13: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  12  

4.2  Correlates  of  Diabetes  Mortality  –  Age  35-­69  (stand.  rate/100,  000)  (ICD  9  

250)  

Linear  regression  was  performed  to  evaluate  the  association  between  risk  of  

mortality  from  diabetes  at  ages  35-­‐69  in  rural  China  and  select  dietary  factors  

evaluated  separately  as  independent  variables.  The  age-­‐standardized  mortality  rate  

(stand.  rate/100,00)  for  the  age  range  35-­‐69  was  used  as  the  dependent  variable.    The  

International  Classification  of  Diseases  (ICD)  version  9  was  used  to  classify  mortality  

from  diabetes.  Diabetes  mortality  rates  were  very  low  for  both  men  and  women  (0.2%  

and  0.3%,  respectively)  and  may  be  due  to  the  low  prevalence  of  obesity  in  rural  

China  and  potentially  due  to  the  fact  that  classification  of  death  due  to  diabetes  is  

difficult  and  highly  variable.  For  example,  the  deaths  of  diabetics  due  to  vascular  

disease  may  be  coded  as  death  from  diabetes.    Analyses  were  conducted  separately  for  

men  and  women.    

The  direction  of  relationships  between  numerous  nutrients  and  diabetes  

mortality  among  men  did  not  follow  the  same  pattern  among  women,  leading  one  to  

believe  some  other  underlying  potential  confounder  may  be  present.  Evaluation  of  

each  macronutrient  separately  as  an  independent  variable  revealed  statistically  

significant  relationships  among  men  only,  where  percent  of  energy  from  fat  was  

significantly  negatively  associated  with  diabetes  mortality  (B=-­‐0.22;  SE=0.09;  p-­‐

value<0.05)  and  percent  of  energy  from  carbohydrates  had  a  significant  positive  

relationship  (B=0.20;  SE=0.08;  p-­‐value<0.05)  (Table  4).  Percentage  of  intake  of  animal  

foods  was  inversely  associated  with  the  mortality  rate,  however  the  relationship  was  

not  statistically  significant.  Percent  of  intake  of  plant  foods  was  significantly  positively  

associated  with  diabetes  mortality  among  men  only  (B=3.48;  SE=0.96;  p<0.01).  No  

statistically  significant  associations  between  vegetable  intake  and  diabetes  mortality  

were  observed.  Fish  consumption  was  negatively  associated  with  diabetes  mortality  

among  both  men  and  women,  however  the  relationship  was  not  statistically  

significant.    

Page 14: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  13  

Analysis  of  fats  and  oils  as  potential  risk  factors  revealed  a  statistically  

significant  relationship  between  vegetable  oil  (g)  and  vegetable  fat  (g)  intake  among  

women  (B=0.14;  SE=0.06;  p-­‐value<0.05  and  B=0.27;  SE=0.12;  p-­‐value<0.05,  

respectively)  (Table  5).  Among  men,  only  animal  fat  intake  (g)  had  a  statistically  

significant  and  negative  association  with  diabetes  mortality  (B=-­‐2.36;  SE=1.01;  p-­‐

value<0.05).    

Among  vitamin  A,  vitamin  C,  and  vitamin  E,  only  vitamin  E  had  a  statistically  

significant  association  among  women  and  it  was  positive  (B=0.19;  SE=0.07;  p-­‐

value<0.01)  (Table  6).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  14  

Table  4.  Linear Regression Beta Coefficients (SE) for Each Diet Quality Indicator Separately Evaluated for its Association with Diabetes Mortality.  

Independent Variables Model 1 MALE

Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

% E Fat -0.22 0.09* 0.13 0.12 % E Carbohydrate 0.20 0.08* -0.15 0.11 % E Protein 0.11 0.06 0.12 0.09 % E Animal Food Low (0%-5%) High (6%-27%)

-1.53

1.01

-0.03

1.38

% E Plant Food Low (73%-96%) High (96%-100%)

3.48

0.96**

-0.40

1.40

% E Processed Starch & Sugar Low (0g-1g) High (2g-22.9g)

-0.66

1.07

1.21

1.42

% E Fiber Low (4.8g-11g) High (12g-38.8g)

1.36

1.00

-0.70

1.35

% E Legumes Low (0g-17g) High (18g-104.6g)

-1.75

0.99#

0.95

1.35

% E Light Colored Vegetables Low (0g-148g) High (149g-510.6g)

-0.94

1.01

2.02

1.33

% E Green Vegetables -0.00005 .005 -0.001 0.007 % E Fish No (referent) Low (1g-14g) High (15g-184.7g)

-1.98 -1.33

1.23 1.20

-1.14 1.73

1.64 1.60

% E Meat Low (0g-31g) High (32g-104.4g)

-1.89

0.98#

0.57

1.35

% E Milk No (0g) Yes (1g-292.2g)

0.85

1.27

3.19

1.65#

% E Eggs Low (0g-3g) High (3g-18g)

-1.25

1.00

1.18

1.34

Note.  All  nutrients  are  presented  as  a  percentage  of  total  energy  (E)  intake  or  adjusted  for  total  energy  by  entering  total  kilocalories  as  a  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

Page 16: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  15  

 

Table  5.  Linear Regression Beta Coefficients (SE) for RBC Fatty Acids and Intake of Fats and Oils Separately Evaluated for their Association with Diabetes Mortality.  

Independent Variables Model 1

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vegetable Oil (g) 0.01 0.05 0.14 0.06* RBC omega-6 -0.004 0.13 -0.13 0.18 RBC omega-3 0.49 0.27# 0.19 0.36 RBC EPA Low (0.09%-0.55%) High (0.56%-2.09%)

0.81

1.05

1.17

1.36

RBC DHA 0.43 0.28 0.13 0.41 Animal Fat (g/day)1

Low (0.2g-5g) High (6g-23.4g)

-2.36

1.01*

-2.20

1.32

Vegetable Fat (g/day)1 0.07 0.09 0.27 0.12* Plasma Cholesterol (mg/dL) -0.01 0.04 0.07 0.06

1  Adjusted  for  total  energy  intake  by  entering  kilocalories  as  an  additional  covariate.  

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

Table  6.  Linear Regression Beta Coefficients (SE) for Select Micronutrients Separately Evaluated for their Association with Diabetes Mortality.  

Independent Variables Model 11

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vitamin A (RE/day/ref. man) -0.002 0.001 0.0008 0.002 Vitamin C (mg/day/ref. man) -0.02 0.009# -0.01 0.01 Vitamin E (mg/day/ref. man) 0.06 0.05 0.19 0.07**

Note.  All  micronutrient  intakes  are  adjusted  for  total  energy  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

Page 17: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  16  

4.3  Correlates  of  Hypertensive  Disease  Mortality  Age  35-­69  

(stand.rate/100,000)(ICD9  401-­5)  

Linear  regression  was  performed  to  evaluate  the  association  between  risk  of  

mortality  from  hypertensive  disease  at  ages  35-­‐69  in  rural  China  and  select  dietary  

factors  evaluated  separately  as  independent  variables.  The  age-­‐standardized  mortality  

rate  (stand.  rate/100,00)  for  the  age  range  35-­‐69  was  used  as  the  dependent  variable.    

The  International  Classification  of  Diseases  (ICD)  version  9  was  used  to  classify  

mortality  from  lymphoma  and  myeloma.  Analyses  were  conducted  separately  for  men  

and  women.  Xinyuan  county  (WB)  was  excluded  from  analyses  due  to  the  fact  that  an  

especially  high  mortality  rate  was  observed  in  this  study  area  and  may  be  due  to  

miscoding  of  ischaemic  heart  disease  as  hypertensive  heart  disease.    

  Evaluation  of  macronutrients  as  a  percent  of  total  energy  intake  as  

independent  variables  revealed  statistically  significant  relationships  among  women  

only,  where  percent  of  energy  from  fat  was  significantly  negatively  associated  with  

mortality  rate  (B=-­‐0.87;  0.41;  p-­‐value<0.05)  and  percent  of  energy  from  

carbohydrates  was  significantly  positively  associated  with  mortality  rate  (B=0.88;  

SE=0.39;  p-­‐value<0.05)  (Table  7).  Percentage  of  plant  food  and  animal  food  intake  

revealed  statistically  significant  relationships  among  women  again,  where  animal  food  

intake  had  an  inverse  relationship  (B=-­‐12.2;  SE=4.55;  p-­‐value<0.01)  and  plant  food  

intake  had  a  positive  relationship  (B=11.5;  SE=4.63;  p-­‐value<0.05).    Processed  starch  

and  sugar  intake,  adjusted  for  total  energy,  was  found  to  be  significantly  negatively  

associated  with  mortality  rate  among  both  men  (B=-­‐17.5;  SE=5.94;  p-­‐value<0.01)  and  

women  (B=-­‐13.3;  SE=4.65;  p-­‐value<0.01).  Regarding  vegetable  consumption,  only  the  

intake  of  legumes  (g)  had  a  significant  relationship  with  mortality  rate,  which  was  

inverse  for  both  men  (B=-­‐12.8;  SE=5.78;  p-­‐value<0.05)  and  women  (B=-­‐11.1;  SE=4.46;  

p-­‐value<0.05).  In  addition,  fish  consumption  was  significantly  and  negatively  

associated  with  mortality  rate  for  both  men  and  women,  and  the  relationship  became  

stronger  with  increasing  fish  consumption.  Egg  consumption  was  also  significantly  

negatively  associated  with  mortality  rate  among  both  men  (B=-­‐13.2;  SE=5.60;  p-­‐

value<0.05)  and  women  (B=-­‐9.94;  SE=4.45;  p-­‐value<0.05).    

Page 18: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  17  

  Evaluation  of  fats  and  oils  separately  as  independent  variables  did  not  reveal  

any  significant  associations  with  mortality  from  hypertensive  disease  (Table  8)  and  

neither  vitamin  A,  vitamin  C,  or  vitamin  E  were  significantly  associated  with  mortality  

from  hypertensive  disease  (Table  9),  although  all  three  were  inversely  related  with  

the  mortality  rate.    

  A  significant  claim  by  Dr.  Campbell  is  that  individuals  with  high  cholesterol  

levels  have  a  much  higher  incidence  of  CHD.  1  His  indictment  of  animal  foods  stemmed  

from  the  positive  correlation  between  animal  foods  and  cholesterol  and  the  negative  

correlation  between  cholesterol  and  plant  foods,  thereby  inferring  that  animal  foods  

are  a  risk  factor  for  coronary  heart  disease.  No  significant  relationships  between  

cholesterol  and  hypertensive  disease  were  observed.  However,  cholesterol  did  have  

an  inverse  relationship  with  percent  E  from  plant  foods  and  a  positive  relationship  

with  percent  E  from  animal  foods  and  mean  cholesterol  levels  were  quite  low  for  both  

men  (Mean=148  mg/dL;  SD=12)  and  women  (Mean=147  mg/dL;  SD=12)  in  rural  

China.  After  adjustment  for  plasma  cotinine  levels,  a  potential  risk  factor  that  may  be  

confounding  results,  no  differences  in  nutrient  associations  with  hypertensive  disease  

mortality  were  observed.    

 

 

 

 

 

 

 

 

 

 

Page 19: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  18  

Table  7.  Linear Regression Beta Coefficients (SE) for Each Diet Quality Indicator Separately Evaluated for its Association with Hypertensive Disease Mortality.  

Independent Variables Model 1 MALE

Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

% E Fat -0.62 0.54 -0.87 0.41* % E Carbohydrate 0.78 0.50 0.88 0.39* % E Protein -0.01 0.39 0.18 0.31 % E Animal Food Low (0%-5%) High (6%-27%)

-10.3

6.00#

-12.2

4.55**

% E Plant Food Low (73%-96%) High (96%-100%)

10.8

6.05#

11.5

4.63*

% E Processed Starch & Sugar Low (0g-1g) High (2g-22.9g)

-17.5

5.94**

-13.3

4.65**

% E Fiber Low (4.8g-11g) High (12g-38.8g)

-3.74

5.95

2.67

4.64

% E Legumes Low (0g-17g) High (18g-104.6g)

-12.8

5.78*

-11.1

4.46*

% E Light Colored Vegetables Low (0g-148g) High (149g-510.6g)

-1.52

5.99

0.24

4.67

% E Green Vegetables 0.03 0.03 0.02 0.02 % E Fish No (referent) Low (1g-14g) High (15g-184.7g)

-12.4 -19.3

6.96# 6.79**

-9.75 -18.5

5.25# 5.12**

% E Meat Low (0g-31g) High (32g-104.4g)

-6.85

5.89

-8.13

4.53

% E Milk No (0g) Yes (1g-292.2g)

7.44

7.62

5.26

5.95

% E Eggs Low (0g-3g) High (3g-18g)

-13.2

5.69*

-9.94

4.45*

Note.  All  nutrients  are  presented  as  a  percentage  of  total  energy  (E)  intake  or  adjusted  for  total  energy  by  entering  total  kilocalories  as  a  covariate.  Xinyuan  county  (WB)  was  excluded  from  analyses  due  to  miscoding  of  ischemic  as  hypertensive  heart  disease.    

*P<0.05;  **P<0.01;  ***P<0.001  

Page 20: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  19  

Table  8.  Linear Regression Beta Coefficients (SE) for RBC Fatty Acids and Intake of Fats and Oils Separately Evaluated for their Association with Hypertensive Disease Mortality.  

Independent Variables Model 1

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vegetable Oil (g) -0.27 0.28 -0.19 0.22 RBC omega-6 0.40 0.74 -0.73 0.60 RBC omega-3 2.08 1.60 1.13 1.24 RBC EPA Low (0.09%-0.55%) High (0.56%-2.09%)

-1.29

6.19

-8.26

4.65#

RBC DHA 1.77 1.66 2.64 1.36 Animal Fat (g/day)1

Low (0.2g-5g) High (6g-23.4g)

-2.50

6.18

0.76

4.64

Vegetable Fat (g/day)1 -0.39 0.53 -0.08 0.41 Plasma Cholesterol (mg/dL) -0.15 0.25 -0.30 0.19

1  Adjusted  for  total  energy  intake  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

 

Table  9.  Linear Regression Beta Coefficients (SE) for Select Micronutrients Separately Evaluated for their Association with Hypertensive Disease Mortality.  

Independent Variables Model 11

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vitamin A (RE/day/ref. man) -0.009 0.007 -0.004 0.006 Vitamin C (mg/day/ref. man) -0.06 0.06 -0.04 0.05 Vitamin E (mg/day/ref. man) -0.45 0.30 -0.23 0.24

Note.  All  micronutrient  intakes  are  adjusted  for  total  energy  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

 

Page 21: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  20  

4.4  Correlates  of  Cancer  Mortality  (all  malignant  neoplasms)  Age  35-­69  

(stand.rate/100,000)(ICD9  140-­208)  

  Linear  regression  was  performed  to  evaluate  the  association  between  risk  of  

mortality  from  cancer  at  ages  35-­‐69  in  rural  China  and  select  dietary  factors  evaluated  

separately  as  independent  variables.  The  mortality  rate  for  all  malignant  neoplasms,  

age-­‐standardized  for  the  age  range  35-­‐69,  was  used  as  the  dependent  variable.    The  

International  Classification  of  Diseases  (ICD)  version  9  was  used  to  assign  codes  and  

diagnose  all  cancers.  All  analyses  were  conducted  separately  for  males  and  females.    

  No  statistically  significant  associations  between  macronutrients  and  select  

foods  and  mortality  rate  for  cancer  were  observed,  with  the  exception  of  meat  (g)  

consumption  among  women,  which  was  significant  and  inverse  (B=-­‐0.87;  SE=0.37;  p-­‐

value<0.05)  (Table  10).  Evaluation  of  each  macronutrient  separately  as  an  

independent  variable,  adjusted  for  total  energy  intake,  did  not  reveal  any  statistically  

significant  associations  with  cancer  mortality  rate.    Percentage  of  animal  food  intake  

was  also  non-­‐significantly  positively  associated  with  mortality  rate  in  men,  while  the  

relationship  was  non-­‐significant  and  negative  among  women.  The  association  

between  percentage  of  plant  food  intake  and  mortality  rate  was  positive  and  non-­‐

significant  for  both  men  and  women.  For  vegetables,  intake  of  legumes,  light  coloured  

vegetables,  and  green  vegetables  (among  women  only)  was  non-­‐significantly  

negatively  associated  with  cancer  mortality  among  both  men  and  women.    

  Further  evaluation  of  consumption  of  fats  and  oils  revealed  vegetable  oil  intake  

(g)  to  be  significantly  positively  associated  with  cancer  mortality  among  men  (B=0.06;  

SE=0.03;  p-­‐value<0.05)  (Table  11).    Daily  animal  fat  intake  (g)  was  negatively  

associated  with  cancer  mortality  among  both  men  and  women,  but  relationships  were  

not  statistically  significant.  Evaluation  of  daily  vegetable  fat  (g)  intake  as  an  

independent  variable  revealed  a  statistically  positive  association  with  cancer  

mortality  among  men  (B=0.12;  SE=0.06;  p-­‐value<0.05)  and  a  non-­‐significant  positive  

association  among  women.  Evaluation  of  RBC  omega-­‐3  and  omega-­‐6  fatty  acid  content  

(evaluated  separately  as  a  %  of  all  RBC  fatty  acid  content)  revealed  a  statistically  

Page 22: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  21  

significant  and  negative  association  with  cancer  mortality  for  omega-­‐6  fatty  acids  

among  women  only  (B=-­‐0.11;  SE=0.05;  p-­‐value<0.05).    

  Evaluation  of  daily  consumption  of  select  micronutrients  revealed  a  

statistically  significant  and  positive  relationship  between  cancer  mortality  and  intake  

of  vitamin  E  (mg/day)  for  both  men  (B=0.09;  SE=0.03;  p-­‐value<0.01)  and  women  

(B=0.05;  SE=0.02;  p-­‐value<0.01)  (Table  12)  Relationships  between  intake  of  vitamin  A  

and  vitamin  E  and  cancer  mortality  were  inverse  for  both  men  and  women,  however  

the  relationships  were  not  statistically  significant.    

  The  main  dietary  variables  significantly  positively  associated  with  mortality  

from  all  cancers  were  percent  E  from  vegetable  fat  and  added  vegetable  oil.  Entering  

these  variables  as  covariates  with  percent  E  from  plant  food  did  not  alter  the  positive  

association  with  all  cancer  mortality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 23: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  22  

Table  10.  Linear Regression Beta Coefficients (SE) for Each Diet Quality Indicator Separately Evaluated for its Association with Cancer Mortality.  

Independent Variables Model 1 MALE

Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

% E Fat -0.04 0.06 -0.05 0.03 % E Carbohydrate 0.03 0.06 0.04 0.03 % E Protein 0.03 0.04 0.03 0.02 % E Animal Food Low (0%-5%) High (6%-27%)

0.07

0.70

-0.44

0.39

% E Plant Food Low (73%-96%) High (96%-100%)

0.13

0.69

0.53

0.37

% E Processed Starch & Sugar Low (0g-1g) High (2g-22.9g)

-0.01

0.73

0.08

0.41

% E Fiber Low (4.8g-11g) High (12g-38.8g)

0.15

0.69

0.66

0.38#

% E Legumes Low (0g-17g) High (18g-104.6g)

-0.40

0.69

-0.27

0.39

% E Light Colored Vegetables Low (0g-148g) High (149g-510.6g)

-0.11

0.69

-0.16

0.39

% E Green Vegetables 0.0003 0.004 -0.001 0.002 % E Fish No (referent) Low (1g-14g) High (15g-184.7g)

-0.19 0.37

0.85 0.83

-0.44 -0.61

0.47 0.46

% E Meat Low (0g-31g) High (32g-104.4g)

-0.95

0.68

-0.87

0.37*

% E Milk No (0g) Yes (1g-292.2g)

0.64

0.86

0.33

0.48

% E Eggs Low (0g-3g) High (3g-18g)

0.79

0.68

-0.07

0.38

Note.  All  nutrients  are  presented  as  a  percentage  of  total  energy  (E)  intake  or  adjusted  for  total  energy  by  entering  total  kilocalories  as  a  covariate.  

*P<0.05;  **P<0.01;  ***P<0.001  

Page 24: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  23  

Table  11.  Linear Regression Beta Coefficients (SE) for RBC Fatty Acids and Intake of Fats and Oils Separately Evaluated for their Association with Cancer Mortality.  

Independent Variables Model 1

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vegetable Oil (g/day) 0.06 0.03* 0.02 0.02 RBC omega-6 -0.11 0.09 -0.11 0.05* RBC omega-3 -0.06 0.19 0.06 0.10 RBC EPA Low (0.09%-0.55%) High (0.56%-2.09%)

-0.23

0.72

-0.01

0.39

RBC DHA -0.09 0.19 0.05 0.12 Animal Fat (g/day)1

Low (0.2g-5g) High (6g-23.4g)

-0.44

0.72

-0.41

0.38

Vegetable Fat (g/day)1 0.12 0.06* 0.06 0.03# Plasma Cholesterol (mg/dL) 0.02 0.03 -0.002 0.02

1  Adjusted  for  total  energy  intake  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

 

Table  12.  Linear Regression Beta Coefficients (SE) for Select Micronutrients Separately Evaluated for their Association with Cancer Mortality.  

Independent Variables Model 11

MALE Model 22

FEMALE

Beta Coefficient

(SE) Beta Coefficient (SE)

Vitamin A (RE/day/ref. man) 0.0004 0.0008 -0.00006 0.0005 Vitamin C (mg/day/ref. man) -0.002 0.007 -0.004 0.004 Vitamin E (mg/day/ref. man) 0.09 0.03** 0.05 0.02**

Note.  All  micronutrient  intakes  are  adjusted  for  total  energy  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

 

 

Page 25: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  24  

4.5  Correlates  of  Lymphoma  and  Myeloma  Mortality  Age  35-­69  

(stand.rate/100,000)  (ICD9  200-­3)  

Linear  regression  was  performed  to  evaluate  the  association  between  risk  of  

mortality  from  lymphoma  and  myeloma  at  ages  35-­‐69  in  rural  China  and  select  

dietary  factors  evaluated  separately  as  independent  variables.  The  age-­‐standardized  

mortality  rate  (stand.  rate/100,00)  for  the  age  range  35-­‐69  was  used  as  the  dependent  

variable.    The  International  Classification  of  Diseases  (ICD)  version  9  was  used  to  

classify  mortality  from  lymphoma  and  myeloma.  The  data  indicated  much  higher  

mortality  rate  for  men  in  most  counties,  therefore  data  analysis  was  focused  on  male  

mortality  rate.    

No  statistically  significant  relationships  between  macronutrients  and  mortality  

rate  were  observed  (Table  13).  The  relationships  between  percent  of  energy  from  

protein  and  carbohydrates  and  mortality  rate  were  both  negative  while  the  

relationship  between  percent  of  energy  from  fat  was  positive.  Neither  percentage  of  

animal  food  intake  or  plant  food  intake  and  mortality  rate  were  significantly  

associated,  however  intake  of  both  animal  food  and  plant  food  was  inversely  

associated  with  mortality  rate.  A  statistically  significant  and  positive  association  was  

observed  for  intake  of  processed  starch  and  sugars,  adjusted  for  total  energy  by  

entering  kcalories  as  a  covariate,  and  mortality  rate  (B=2.82;  SE=1.26;  p-­‐value<0.05).  

For  vegetable  intake,  only  a  statistically  significant  and  positive  relationship  was  

observed  for  intake  of  legumes  (g)  and  mortality  rate  (B=3.07;  SE=1.18;  p-­‐

value<0.05).  The  association  between  fiber  intake  and  mortality  rate  was  inverse  but  

not  significant.  Fish  consumption  was  also  found  to  be  significantly  and  positively  

associated  with  mortality  rate,  while  no  significant  relationship  was  observed  

between  meat  (g)  intake  and  mortality  rate.    

Potential  risk  factors  for  lymphoma  include  hepatitis  infection  and  malaria  and  

both  of  these  variables  were  significantly  correlated  with  lymphoma  in  unadjusted  

analyses,  therefore,  regression  analyses  were  repeated  with  the  addition  of  the  

following  two  potential  confounding  variables:  plasma  hepatitis  B  surface  antigen  (%  

Page 26: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  25  

of  individual  samples  that  were  positive  in  non-­‐pooled  analysis  in  each  study  area)  

and  malaria  (%  of  individuals  in  each  study  area  with  a  history  of  malaria  diagnosis).  

After  addition  of  these  potential  confounding  variables,  processed  starch  and  sugar  

intake,  fish  consumption,  and  legume  (g)  intake  all  maintained  their  positive  and  

significant  relationships  with  mortality  rate.    

Evaluation  of  fats  and  oils  revealed  statistically  significant  and  positive  

associations  for  vegetable  oil  (g)  intake  (B=0.16;  SE=0.006;  p-­‐value<0.01)  and  

vegetable  fat  (g)  intake  (B=0.29;  SE=1.11;  p-­‐value<0.01)  and  mortality  rate,  even  after  

adjustment  for  hepatitis  infection  and  history  of  malaria  (Table  14).  Erythrocyte  

omega-­‐3  fatty  acid  content  was  also  found  to  be  significantly  and  inversely  associated  

with  mortality  rate  after  adjustment  for  the  potential  confounding  variables  (B=-­‐0.65;  

SE=0.35;  p-­‐value<0.05).  Further  analysis  of  erythrocyte  EPA  and  DHA  content  

revealed  inverse  associations  with  mortality  rate,  however  the  relationship  was  only  

statistically  significant  for  DHA  (B=-­‐0.77;  SE=0.34;  p-­‐value<0.05).    

Evaluation  of  daily  intake  of  the  select  micronutrients  and  their  association  

with  mortality  rate  after  adjustment  for  hepatitis  infection  and  malaria  revealed  a  

statistically  significant  and  positive  association  between  vitamin  E  intake  and  

mortality  from  lymphoma  and  myeloma  (B=0.14;  SE=0.05;  p-­‐value<0.01)  (Table  15).    

Although  fish  consumption  was  significantly  positively  associated  with  

lymphoma  mortality,  omega-­‐3  fatty  acid  –  especially  docosahexanaeoic  acid  –  was  

significantly  inversely  associated  with  lymphoma  mortality.  However,  adjusting  for  

omega-­‐3  fatty  acids  in  the  linear  regression  of  fish  and  lymphoma  mortality  rate,  fish  

intake  was  still  significantly  negatively  associated  with  mortality  rate.    

 

 

 

 

Page 27: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  26  

Table  13.  Linear Regression Beta Coefficients (SE) for Each Diet Quality Indicator Separately Evaluated for its Association with Lymphoma and Myeloma Mortality Rate.  

Independent Variables Model 11 Model 22

HBsAg, malaria Beta

Coefficient (SE) Beta Coefficient (SE)

% E Fat 0.11 0.11 0.07 0.11 % E Carbohydrate -0.10 0.11 -0.09 0.10 % E Protein -0.13 0.08 -0.05 0.09 % E Animal Food Low (0%-5%) High (6%-27%)

-0.10

1.27

-0.56

1.26

% E Plant Food Low (73%-96%) High (96%-100%)

-2.15

1.26#

-1.18

1.32

% E Processed Starch & Sugar Low (0g-1g) High (2g-22.9g)

2.82

1.26*

3.02

1.23*

% E Fiber Low (4.8g-11g) High (12g-38.8g)

-1.64

1.22

-0.35

1.32

% E Legumes Low (0g-17g) High (18g-104.6g)

3.07

1.18*

2.48

1.22*

% E Light Colored Vegetables Low (0g-148g) High (149g-510.6g)

0.23

1.24

0.77

1.22

% E Green Vegetables 0.008 0.007 0.003 0.007 % E Fish No (referent) Low (1g-14g) High (15g-184.7g)

4.53 4.09

1.39** 1.36**

3.69 3.46

1.50* 1.46*

% E Meat Low (0g-31g) High (32g-104.4g)

0.02

1.23

-0.66

1.25

% E Milk No (0g) Yes (1g-292.2g)

-1.56

1.54

-0.80

1.52

% E Eggs Low (0g-3g) High (3g-18g)

2.27

1.20

1.70

1.22

Note.  All  nutrients  are  presented  as  a  percentage  of  total  energy  (E)  intake  or  adjusted  for  total  energy  by  entering  total  kilocalories  as  a  covariate.  

*P<0.05;  **P<0.01;  ***P<0.001  

Page 28: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  27  

 

 

 

Table  14.  Linear Regression Beta Coefficients (SE) for RBC Fatty Acids and Intake of Fats and Oils Separately Evaluated for their Association with Lymphoma and Myeloma Mortality.  

Independent Variables Model 11 Model 22

HBsAg, Malaria Beta

Coefficient (SE) Beta Coefficient (SE)

Added Vegetable Oil (g/day) 0.16 0.06** 0.16 0.05** RBC omega-6 -0.22 0.15 -0.21 0.16 RBC omega-3 -0.87 0.32** -0.65 0.35* RBC EPA Low (0.09%-0.55%) High (0.56%-2.09%)

-0.87

1.29

-0.67

1.28

RBC DHA -0.99 0.33** -0.77 0.34* % Animal Fat (g/day)

Low (0.2g-5g) High (6g-21.1g)

-0.02

1.29

-0.74

1.29

% Vegetable Fat (g/day) 0.29 1.11** 0.31 0.10** Plasma Cholesterol (mg/dL) -0.03 0.05 0.0005 0.05

1  Adjusted  for  total  energy  intake  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

Table  15.  Linear Regression Beta Coefficients (SE) for Select Micronutrients Separately Evaluated for their Association with Lymphoma and Myeloma Mortality.  

Independent Variables Model 11 Model 22

HBsAg, Malaria Beta

Coefficient (SE) Beta Coefficient (SE)

Vitamin A (RE/day/ref. man) 0.003 0.001 0.001 0.002 Vitamin C (mg/day/ref. man) 0.01 0.01 -0.001 0.01 Vitamin E (mg/day/ref. man) 0.13 0.06* 0.14 0.05**

Note.  All  micronutrient  intakes  are  adjusted  for  total  energy  by  entering  kilocalories  as  an  additional  covariate.    

*P<0.05;  **P<0.01;  ***P<0.001  

 

Page 29: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  28  

5.0  Conclusion    

  After  performing  regression  analyses,  the  data  does  not  justify  the  indictment  

of  all  animal  foods  as  risk  factors  for  chronic  degenerative  disease.  Limitations  of  the  

analyses  include  the  overall  low  consumption  of  animal  foods,  as  a  percent  of  total  

energy,  compared  to  the  consumption  of  plant  foods  and  the  small  sample  size,  which  

may  be  decreasing  the  statistical  power  to  detect  true  associations.  Furthermore,  

added  vegetable  oil  was  consistently  identified  as  a  risk  factor  for  the  above  chronic  

diseases,  with  the  exception  of  hypertensive  disease  where  no  significant  association  

was  identified.  However,  in  analyzing  nutrition  data  and  the  effect  of  isolated  

nutrients  on  chronic  disease  it  is  important  to  keep  in  mind  that  all  nutrients  are  

inter-­‐correlated  and,  therefore,  it  is  quite  difficult  to  detect  the  subtle  effects  of  solely  

one  nutrient  on  disease.  Furthermore,  not  only  is  diet  affected  by  several  other  factors  

such  as  environment,  availability  of  foods,  seasonality  of  foods,  and  socioeconomic  

status,  but  disease  is  also  affected  by  several  environmental  and  lifestyle  factors  that  

may  be  confounding  results.  The  presence  of  other  underlying  disease  status  is  yet  

another  potential  for  confounding,  therefore  multivariate  analyses  should  be  

performed  in  the  future  analyses  of  this  dataset.  Furthermore,  the  analyses  are  not  

adjusted  for  physical  activity,  which  is  a  potential  confounder  of  the  observed  

relationships  between  diet  and  disease.  Also,  dietary  intake  data  collected  by  the  

three-­‐day  food  record  was  standardized  intake  per  ‘reference  man’,  defined  as  a  male  

aged  19-­‐59  years  old,  weighing  65  kg  and  undertaking  very  light  physical  activity,  

which  potentially  limited  the  detection  of  associations  that  may  have  been  identified  if  

all  analyses  could  simply  be  adjusted  for  age  and  gender  variables  separately.  Also,  

although  the  mortality  rates  were  age-­‐standardized  for  males  and  females  separately,  

the  dietary  intake  data  from  the  three-­‐day  food  record  is  presented  as  a  single  average  

per  study  area  and  does  not  distinguish  between  male  and  female  data.    Dietary  

intakes  vary  greatly  with  age  and  gender,  therefore  the  presentation  of  the  data  in  this  

manner  is  also  a  potential  limitation.  Also,  data  was  collected  for  approximately  8,307  

individuals  and  presentation  of  individual  data,  if  it  is  feasible,  would  have  allowed  for  

better  analysis  of  diet-­‐disease  relationships.    

Page 30: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  29  

Lastly  but  not  least,  this  was  a  geographical  correlation  study  therefore  the  

potential  of  ecological  fallacy  due  to  confounding  variables  is  a  major  limitation;  in  

geographical  correlation  studies  it  is  not  uncommon  to  observe  statistically  significant  

relationships  with  a  p-­‐value  of  less  than  0.001  just  by  chance.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 31: 1.0Introductionraschfoundation.org/wp-content/uploads/Cornell... · Chen J,Peto R ,Pan W ,Liu B ,Campbell TC .Mo rtality, Biochemistry, Diet, and Lifestyle in Rural China: Geographic

  30  

Bibliography  

 

1.   Campbell TC,  Campbell TM.  The China study: the most comprehensive

study of nutrition ever conducted and the startling implications for diet, weight loss,

and long-term health:  Benbella Books;  2006.  

2.   Hulley S,  Cummings S,  Browner W,  Grady D,  Newman T.  Designing Clinical

Research.  Third Edition  ed.  Philadelphia;  2007.  

3.   FAO/WHO/UNU.  Energy and protein requirements. Report of a joint

FAO/WHO/UNU Expert Consultation.  In:  WHO Technical Report Series No. 724.  

Geneva:  World Health Organization;  1985.  

4.   Chen J,  Peto R,  Pan W,  Liu B,  Campbell TC.  Mortality, Biochemistry, Diet,

and Lifestyle in Rural China: Geographic study of the characteristics of 69 counties

in mainland China and 16 rural areas in Taiwan:  Oxford University Press;  2006.  

5.   WHO.  Obesity: Preventing and Managing the Global Epidemic.  In:  WHO

Technical Report Series.  Geneva:  World Health Organization;  2000.