26
10. Plastic Instability 10. Plastic Instability Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: e-mail: [email protected] [email protected] Mechanical Engineering Department Gebze Technical University ME 612 ME 612 Metal Forming and Theory of Metal Forming and Theory of Plasticity Plasticity

10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: [email protected]@gmail.com Mechanical Engineering Department Gebze

Embed Size (px)

Citation preview

Page 1: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

10. Plastic Instability10. Plastic Instability

Assoc.Prof.Dr. Ahmet Zafer Şenalpe-mail: e-mail: [email protected]@gmail.com

Mechanical Engineering DepartmentGebze Technical University

ME 612ME 612 Metal Forming and Theory of Plasticity Metal Forming and Theory of Plasticity

Page 2: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

General instability classification:• Elastic instability• Plastic instability

The instability behavior of columns under compression is an example of elastic instability (determination of load that instability starts).

Plastic instability anaylsis searches for the load or pressure that will cause rupture or crack in plastic deformation zone.

In this section the plastic instabillity anaylsis for:• Simple tension test• Thin walled cylinder• Thin walled pipe will be presented.

Dr. Ahmet Zafer Şenalp ME 612

2Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

Page 3: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Figure 10.1. Load elongation curve for tensile test

Dr. Ahmet Zafer Şenalp ME 612

3Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

Page 4: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Stress and strain states in tension test:

Dr. Ahmet Zafer Şenalp ME 612

4Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

A

F1

02 03

01 ln

02 w

wln

03 t

tln

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

Page 5: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Levy-Mises equations:

If related equalities are placed in Levy-Mises equations:

Dr. Ahmet Zafer Şenalp ME 612

5Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

(10.7)

(10.8)

(10.9)

(10.12)

(10.10)

(10.11)

3211 2

1d

3

2d

3122 2

1d

3

2d

2133 2

1d

3

2d

11 d3

2d

12 2

1d

3

2d

13 2

1d

3

2d

Page 6: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

From here:

is obtained. The equalities (10.2) and (10.3) are placed in the equivalent stress equation:

As a result:

is obtained.

Dr. Ahmet Zafer Şenalp ME 612

6Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

(10.13)

(10.14)

(10.15)

(10.18)

(10.19)

2d

d

2

1

2d

d

3

1

32

21

231

232

221

2

1

1

Page 7: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

To find equivalent strain equalities (10.13) and (10.14) are placed into the equivalent strain equation:

As a result:

is obtained. Eq (10.1) is written as:

If ln is applied to both sides of the equality:

Dr. Ahmet Zafer Şenalp ME 612

7Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

(10.20)

(10.21)

(10.22)

(10.23)

21

231

232

221 dddddd

3

2d

1dd

AF 1

AlnlnFln 1

A

dAd

F

dF

1

1

(10.24)

Page 8: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

At maximum load ( F=Fmax) :

At instability point work hardening rate is equal to the area reduction rate. From constancy of volume:

As volume is constant the term defining volume change:

Dr. Ahmet Zafer Şenalp ME 612

8Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

(10.25)

(10.26)

(10.27)

(10.28)

(10.29)

0F

dF

A

dAd

A A V 00

lnAlnVln

d

A

dA

V

dV

0V

dV (10.30)

Page 9: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

If Eq (10.26) and (10.31) are equated:

instability equation is obtained. This equation can be written in terms of equivalent stress and equivalent strain:

Dr. Ahmet Zafer Şenalp ME 612

9Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1. Tensile Plastic Instability10.1. Tensile Plastic Instability

(10.31)

(10.32)

d

A

dA

11

1 ddd

11

1

d

d

d

d

Page 10: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

It is assumed that material obeys Swift equation:

is obtained. Eq (10.32) and (10.34) are equated:

term is obtained, simplifying this:

strain instability equation is obtained.In this equation;n : Work hardening powerB : Prestrain coefficient

Dr. Ahmet Zafer Şenalp ME 612

10Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

(10.33)

(10.35)

n)B(C

)B(

n

)B(

)B(nC

d

d n

(10.34)

)B(

n

Bn (10.36)

If n is high work hardenening is high,if n is low work hardenening is less.If B is high small deformationIf B is small large deformation occurs

Page 11: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Strain instability equation given in Eq (10.36)is placed into Swift equation:

is obtained. At the same time:

If Eq (10.38) is placed into Eq (10.39):

is obtained.

Dr. Ahmet Zafer Şenalp ME 612

11Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

(10.37)

(10.39)

(10.38)

(10.40)

nnn Cn)BnB(C)B(C

n1 Cn

AF 1

ACnF n

A

Alnln 0

01

1e

AA 0

(10.41)

Page 12: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Eq (10.41) is placed into Eq (10.40):

Term is obtained. This term is force instability term. Figure 10.2. shows generelized instability strain. Here z is defined as:

For simple tension test the above obtained term is placed into z equation z=1 is obtained.

Dr. Ahmet Zafer Şenalp ME 612

12Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1. Tensile Plastic Instability10.1. Tensile Plastic Instability

(10.42)

(10.43)

1e

ACnF 0n

n

)B(z

Bn

Page 13: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Figure 10.2. Generalized instability strain

Dr. Ahmet Zafer Şenalp ME 612

13Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability

10.1.10.1. Tensile Plastic Instability Tensile Plastic Instability

Page 14: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Stress and strain states of a thin walled sphere is:

Dr. Ahmet Zafer Şenalp ME 612

14Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.44)

(10.45)t2

Pr21

03 (Plane stress problem)

021 r

rln

03 t

tln

(10.46)

(10.47)

Figure 10.3. Free body diagram of a spherical shell subjected to internal pressure

Page 15: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Instability analysis will be conducted on maximum pressure criteria.Maximum P means maximum Levy-Mises equations:

If Eq (10.44) and (10.45) are placed into Eq (10.48) and (10.50):

Dr. Ahmet Zafer Şenalp ME 612

15Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.51)

(10.48)

(10.49)

(10.50)

1

3211 2

1d

3

2d

3122 2

1d

3

2d

2133 2

1d

3

2d

11 2

1d

3

2d

13 d3

2d (10.52)

Page 16: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

From Eq (10.51) and (10.52)

From Eq (10.44)

is obtained. For maximum pressure criteria at instabilitydP=0If Eq (10.46) and (10.47) are used in Eq (10.55)

is obtained.

Dr. Ahmet Zafer Şenalp ME 612

16Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.56)

(10.53)

(10.54)

(10.55)

(10.57)

312

2lntlnrlnPlnln 1

0t

dt

r

dr

P

dPd

1

1

311

1 ddd

Page 17: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

If Eq (10.53) is placed into the above Eq:

Equivalent stress:

If Eq (10.44) and (10.45) are placed into Eq (10.59) :

Equivalent strain:

Dr. Ahmet Zafer Şenalp ME 612

17Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.60)

(10.58)

(10.59)

(10.61)

11

1 d3d

21

231

232

221

2

1

1

21

231

232

221 dddddd

3

2d

Page 18: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

If Eq (10.47) and (10.53) are placed into Eq (10.61)

If Eq (10.60) and (10.62) are placed into Eq (10.58)

It is assumed that material obeys Swift’s Law:

Dr. Ahmet Zafer Şenalp ME 612

18Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.64)

(10.62)

(10.63)

(10.65)

dd2 1

d2

3d

2

3

d

d

n)B(C

B

n

B

)B(nC

d

dn

(10.66)

Page 19: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

From Eq (10.64) and (10.65)

By simplifying:

If Eq (10.68) is placed into Swift equation:

is obtained. Using Eq (10.60) and (10.69):

Dr. Ahmet Zafer Şenalp ME 612

19Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.69)

(10.67)

(10.68)

(10.79)

B

n

2

3

B3

n2

n

3

n2C

n

1 3

n2C

Page 20: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

and using Eq (10.44) and (10.79)

is obtained. Using Eq (10.62), (10.68) and (10.46), (10.47)

is obtained. Here the value obtained in Eq (19.80) is the critical pressure value according to maximum pressure criteria obeying Swift’s law. After this pressure value a crack or rupture or explosion in the material should be expected.

Dr. Ahmet Zafer Şenalp ME 612

20Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.2. Plastic Instability Analysis10.2. Plastic Instability Analysis

for Thin Walled Spherefor Thin Walled Sphere

(10.82)

(10.80)

(10.81)

r

t2

3

n2CP

n

2

B

3

n

0err

B

3

n2

0ett

Page 21: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Plastic instability analysis will be performed according to maximum pressure criteria. For a thin walled pipe stess, strain states are:

Hoop stress:

Longitudinal stress:

Max. P Max

Dr. Ahmet Zafer Şenalp ME 612

21Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.3. Plastic Instability Analysis10.3. Plastic Instability Analysis

for Thin Walled Pipefor Thin Walled Pipe

(10.85)

(10.83)

(10.84)t

Pr1

t2

Pr2

03

21

2

(Plane stress problem)

1(10.86)

01 r

rln

0l

lln

02

03 t

tln

(Plane strain problem)

(10.87)

(10.88)

(10.89)

Page 22: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

This problem can be accepted as both plane stress and plane strain problem.

Levy-Mises equations:

If Eq (10.85) and (10.86) are placed into (10.90) and (10.91)

Dr. Ahmet Zafer Şenalp ME 612

22Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.3. Plastic Instability Analysis10.3. Plastic Instability Analysis

for Thin Walled Pipefor Thin Walled Pipe

(10.91)

(10.90)

(10.92)

(10.93)

(10.94)

3211 2

1d

3

2d

3122 2

1d

3

2d

2133 2

1d

3

2d

11 4

3d

3

2d

13 4

3d

3

2d

Page 23: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

is obtained. From Eq (10.93) and (10.94)

From Eq (10.83)

For maximum pressure criteria at instability:dP=0Eq (10.87),(10.89) and (10.98) are replaced into Eq (10.97):

is obtained. If Eq (10.95) is placed into Eq (10.99):

Dr. Ahmet Zafer Şenalp ME 612

23Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.3. Plastic Instability Analysis10.3. Plastic Instability Analysis

for Thin Walled Pipefor Thin Walled Pipe

(10.96)

(10.95)

(10.97)

(10.99)

(10.98)

31

tlnrlnPlnln 1

t

dt

r

dr

P

dPd

1

1

311

1 ddd

11

1 d2d

(10.100)

Page 24: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Equivalent stress is:

Eq (10.85) and (10.86) are placed into Eq (10.101) :

Equivalent strain is:

If Eq (10.88) and (10.95) are placed into Eq (10.103) :

Placing Eq (10.102) and (10.104) into Eq (10.100):

Dr. Ahmet Zafer Şenalp ME 612

24Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.3. Plastic Instability Analysis10.3. Plastic Instability Analysis

for Thin Walled Pipefor Thin Walled Pipe

(10.101)

(10.102)

(10.104)

(10.103)

(10.105)

21

231

232

221

2

1

3

21

21

231

232

221 dddddd

3

2d

d2

3d 1

d3d

Page 25: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

From Eq (10.105)

is obtained. From Eq (10.106) and (10.107)

is obtained. From here:

is obtained. If Eq (10.110) is placed into Eq (10.107) :

Dr. Ahmet Zafer Şenalp ME 612

25Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.3. Plastic Instability Analysis10.3. Plastic Instability Analysis

for Thin Walled Pipefor Thin Walled Pipe

(10.106)

(10.107)

(10.109)

(10.108)

(10.110)

3d

d

n)B(C

)B(

n

)B(

)B(nC

d

d n

)B(

n3

B3

n

n

3

nC

(10.111)

Page 26: 10. Plastic Instability e-mail: Assoc.Prof.Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail.comazsenalp@gmail.com Mechanical Engineering Department Gebze

Using Eq (10.102) and (10.111) :

is obtained. Using Eq (10.83) and (10.112)

term is obtained. Using Eq (10.104), (10.110) and (10.87), (10.89)

Equations are obtained. Here the value obtained in Eq (10.113) is the critical pressure value. After this pressure value a crack or rupture or explosion in the material should be expected.Eq (10.114) and (10.115) give the critical radius and critical thickness values respectively.

Dr. Ahmet Zafer Şenalp ME 612

26Mechanical Engineering Department, GTU

10. Plastic Instability10. Plastic Instability10.3. Plastic Instability Analysis10.3. Plastic Instability Analysis

for Thin Walled Pipefor Thin Walled Pipe

(10.112)

(10.114)

(10.113)

(10.115)

n

13

nC

3

2

r

t

3

nC

3

2P

n

B

3

n

2

3

0err

B

3

n

2

3

0ett