40
10-Nov-2005 US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

Embed Size (px)

Citation preview

Page 1: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

1

Page 2: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

2

Staves: An Integrated Tracking Structure

for the IDCarl Haber

Page 3: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

3

Outline

• Issues from Genoa– Derived specifications

• Progress on Phase 1 program

• Plan for future work

Page 4: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

4

Genoa Meeting

• Basic configuration “consensus”– Pixel region

– Intermediate region: 3 SS layers 3cm x 80m

– Outer region: 2 DS layers ~10cm x 150m, • Z measurement provided by stereo

• Radiation issues: implication for S/N and operating temperature– ~-25C suggested

• Strong emphasis on material and services reduction: alternate powering schemes

Page 5: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

5

Basic Genoa Layout

0.000

20.000

50.000

100.000

0.0

00

10

0.0

00

10

0.0

00

20

0.0

00

20

0.0

00

pixel region

Page 6: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

6

2 Types of Staves

• 20<R<50cm: 1 meter stave, 6.4 x 3 cm strips, alternate along Z, top/bottom provides full coverage

• R>50cm: 2 meter stave, 6.4 (12.8) x 12 cm strips, axial/stereo – top/bottom design to provide Z at large radius– Width driven by economics and electrical issues (voltage drops…)

16 modules/side

18 modules/side

Page 7: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

7

Mechanical Core

Page 8: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

8

Stave End View

Hybrid electronics

Peek Cooling channels 2.9 x 5.6 mm

Silicon Sensors4mm separation

Material/stave: • 1.8% RL •(compare 2.5% ATLAS)• 124 grams

Fraction of Total RL:• Hybrids 13%• Sensors 39%• Bus Cable 17%• CF/Coolant 29%

Carbon Fiber Skin

Foam Core

Page 9: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

9

Integratedsupportstructure:

2 int bulkhead3 outer bulkheads2(3) barrels

Page 10: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

10

Structure with oneouter barrel andmaximum of 1 meterunsupported staves

Page 11: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

11

Details of CDF Bulkhead

See stave core mechanical samples

Page 12: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

12

Stave Specifications

• Electrical– Power distribution– Signal transmission– HV

• Mechanical: advocate a monitored approach with software corrections implicit. There are many examples of large scale precision systems done that way.– Accuracy in plane– Sag effects– Operating temperature and gradients

Page 13: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

13

Property Short stave Long Stave

width 6.4 cm 6.4 cm (12.8 cm)

length 98 cm 192 cm

detector width 6.4 cm 6.4 cm (12.8 cm)

detector length 3 cm 12 cm

detectors per side 18 16

gap between detector along the stave 2.4 cm 3 mm

detector thickness 280 microns 300 microns

number of strips 768 384 (768)

strip pitch 80 microns 160 microns

Power in front end chips 3 watts 1.7 watts (3.3 watts)

Power in silicon – no dose 1 milliwatt 1 (2) milliwatt

Power in silicon – high dose 1 watt 1 (2) watt

Maximum temperature at silicon -25 C -10 C

Maximum temperature variation <5 C <5C

Max detector position shift from nominal y 30 microns 30 microns

Max detector position shift from nominal x 30 microns 30 microns

Survey accuracy Sy 5 microns 5 microns

Survey accuracy Sx 10 microns 5 microns

Survey accuracy S 0.13 mRad 0,13 mRad

Ladder sag maximum 250 microns 500 microns

Ladder sag stability 50 microns 50 microns

Page 14: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

14

Page 15: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

15

Operating Temp – S/N

• At Genoa values quoted -15 to -25 C

• Depends on how the spec’d S/N (10?) is achieved, many variables at play– Leakage current vs dose well known– Silicon thickness– CCE, orientation (n in p, n in n, p in n)– Strip pitch: cluster size, capacitance– FE noise, integration time

Page 16: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

16

Continued…

• p bulk gives us high field at collection, good for CCE issue

• Wide pitch (150 um) gives us large volume for current generation (bad) but favors single strip clusters (good), and lower capacitance

• Fast electronics allows us to reduce integration time (good for shot noise) but has larger series noise (bad, but how bad?) and required more power (bad for cooling).

• Etc….

Page 17: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

17

Comments on Monitoring

• Stave sag and other deformations (temperature) will be present

• Position monitoring and readout should be designed into the system from the start.– A number of precise and long range position

sensing technologies are commercially available

• We should be prepared to apply software corrections to the alignment extensively

Page 18: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

18

Phase 1 Stave•An ATLAS version of the CDF Run2b device•1 sensor + hybrid = 1 module (hybrid glued to Si)• 6 modules per side• Modules linked by embedded bus cable and readout token passing scheme• 2 sided – axial/stereo or axial/axial• 1 Interface Card /stave• Total length 66 cm• 6144 channels /stave•Built around carbon fiber/foam laminate

Purpose is do demonstrate low noise multi-module performance with ATLAS electronics

Page 19: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

19

Phase 1 Milestones (completion dates given):full electrical specification and schematic for Phase 1 stave 10/04 doneestablishment of test stands at LBNL, BNL, and Hampton 11/04 donevalidation of test stand operation on test parts 12/04 donedesign and layout of Phase 1 hybrid 12/04 donefabrication of hybrid 03/05 doneassembly and test of hybrid 04/05 donere-commission and tests with existing fixtures 03/05 doneassembly of ATLAS staves 06/05 11/05initial test of ATLAS staves at LBNL 07/05 11/05transfer to and test of staves at BNL/Hampton 08/05 12/05irradiation studies of staves 10/05 02/06transfer of assembly methods to BNL 07/05 12/05

Page 20: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

20

Bus cable detail shows bonding region

The bus cable runs UNDERNEATH the sensors. Connections to the hybrids made with wirebonds in small Z gaps between consecutive crystals

Bus cable is copper/kapton/Al laminate with 100 micron lines/spaces and thin Al shield layer

Electrical isolation of bus from detectors by grounded shield and diagonal traces (not parallel to strips)

Page 21: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

21

Page 22: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

22

ABCD Hybrid

• Fabricated in BeO• Fine pitch (100 micron)

etched line-work• 7 micron Au thickness• Bond to pc card for test• Re-bond on stave• No connectors• Schematic similar to

standard SCT hybrids• Electrically OK• 64 fabricated

Page 23: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

23

Module Assembly/Hybrid Mount

Page 24: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

24

Module Test

Conducting rubber

Page 25: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

25

Page 26: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

26

Main Technical Issue: Clock Distr.• Existing bus cable design: individual clock/com to each of 6

modules• This was at the edge of practicality (layout)• Genoa: long staves with N ’modules• Prefer to use a multidrop configuration

– This may be the only practical solution for longer staves– Stave bus cable has been redesigned, layout revision in progress– Timing and reflections have been studied– Implications for ABCD-Next design, etc.

Page 27: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

27

Bus Cable Geometry and Impedance

11

1~10.7

1

2

CF

Cu

ADHESIVE

KAPTON

Materials: Al foil 2mil, Dupont LF0100, Shinetsu CA333 2 mils, Cu 18 um,Kapton 1 mil, Adhesive

Al

>>Matches measured impedance

Page 28: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

28

Issue of timing

• Hybrid stubs = 12 pf

• LVDS risetime = 3.5 ns

• Bandwidth = 0.35/3.5 = 100 MHz

• Impedance of hybrid stub due to capacitance• 1/(2pi * 100 MHz * 12 pf) = 130 ohms

• Propagation time = 60 ps/cm (3 ns for 50 cm)

Page 29: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

29

Measurements

• Literature available on LVDS multidrop performance– Application reports from TI,

National, Fairchild…– TI study of 36 receivers

• Need to understand this configuration as part of the ongoing study– Significant impact on

cabling

Page 30: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

30

Bus Cable Test75

termination 12+12

40 MHz, at pos 1

-4.00E-01

-3.00E-01

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

1 54 107 160 213 266 319 372 425 478

Series1

ref1 at pos 1

40 MHz at pos 3

-3.00E-01

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

1 56 111 166 221 276 331 386 441 496

Series1

ref2 at pos 3

40 MHz at pos 5

-4.00E-01

-3.00E-01

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

1 57 113 169 225 281 337 393 449

Series1

ref 3 at pos 5

40 MHz, No Bus

-4.00E-01

-3.00E-01

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

1 50 99 148 197 246 295 344 393 442 491

Series1

No Bus

Page 31: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

31

Implications

• Bus cable test results imply that Phase 1 test stave with 6 hybrids (4 ABCD chips/hybrid) will probably work with a single clock line.

• For large N staves need to consider an LVDS receiver chip at the hybrid input to reduce capacitance seen by the bus drivers

• This is consistent with reduced services model– AC coupling– Regulators– Current monitor– Addressing issues (A.G. note)

• The module receiver chip (MRC) definition and specification should become an important aspect of the ABCD-next discussion.

Page 32: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

32

Continued Activity FY06• Complete Phase 1 stave

– Apply a multidrop configuration• Alternative powering: add to a second version of the Phase 1 stave

– Serial– DC-DC?– Study of bussing and system issues.

• Development of stave readout electronics– Evaluate performance of SCTDAQ for multi-module tests

• Development of detectors– BNL is pursing the 3 cm design

• Study of mechanical concepts for long staves – Bill Miller– Material– Geometry, cross-section– Cooling– Fabrication

• ABCD-next– MRC definition?

Page 33: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

33

Complete Phase 1 Stave

• Fabricate bus cable

• Continue fabrication and test of remaining hybrids and modules

• Assemble and test 2-3 staves for LBNL and BNL, Hampton

• Costs within FY05 funding

Page 34: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

34

Alternate Powering• Development of specs (LBNL)• Add serial powering test to the Phase 1 stave

– New version of the bus cable (LBNL)– Add power interface hybrid (LBNL, RAL)– Use commercial components

• Investigate a “universal” configuration for serial and DC-DC tests (LBNL)

• System issues – bypass, failure, noise (BNL)

Page 35: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

35

Readout System

• Need to understand how well current UK test stand works for multi-module staves tests, issue of concurrent operation

• Alternative is a simple pattern generation approach similar to LBNL “Patt Board” developed by MGS for CDF

• Engineering on this would be done at BNL and is included in FY06 budget

Page 36: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

36

Detectors

• To go beyond the Phase 1 stave based upon CDF Run2b surplus detectors required ATLAS specific devices

• Candidate is the 3cm short strip design

• BNL will do a design and fabricate.

• For the outer stave the CDF devices may still be useful – need to do inventory and availability

Page 37: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

37

Mechanics

• 1m and 2m designs require new ME effort for design and fabrication– Laminates– Boxes– Extrusions

• Low temperature operation• Materials• B.Miller effort – LBNL• Fixture studies – LBNL (FNAL connection)• BNL engineering• RAL engineering

Page 38: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

38

Conclusions/Actions

• Complete phase 1 stave– Near term

• Develop serial powering modification to stave– Summer 06

• ABCD-next effort– Define interface aspect, MRC

• Continue mechanical studies– Include monitored alignment concepts

• Develop test detectors for phase 2 stave• Readout electronics study

Page 39: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

39

R500.000

R1000.0004.6°

Page 40: 10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1

10-Nov-2005 US ATLAS Tracking UpgradeSanta Cruz

40