25
Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07 ATL-P-MN-0006 v.1 Development of non-inverting Silicon strip detectors for the ATLAS ID Upgrade ( H. Sadrozinski, P. Allport, N. Unno +25 Institutions)). “The goal of the program is the industrial pre- production of SSD optimized for sLHC operation and includes both short and long strips.” “In addition, the RD activity should take into account the needs of the module development program and plan to have sensors available on the required time-scale.” Outline: 1. Framework of R&D Program 2. Recent Results 3. Future Plans 4. ATLAS07 Submission to HPK SSD Development for ATLAS Upgrade Tracker

SSD Development for ATLAS Upgrade Tracker

  • Upload
    alanna

  • View
    101

  • Download
    0

Embed Size (px)

DESCRIPTION

SSD Development for ATLAS Upgrade Tracker. ATL-P-MN-0006 v. 1 Development of non-inverting Silicon strip detectors for the ATLAS ID Upgrade ( H. Sadrozinski, P. Allport, N. Unno +25 Institutions)). - PowerPoint PPT Presentation

Citation preview

Page 1: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

ATL-P-MN-0006 v.1 Development of non-inverting Silicon strip detectors for the ATLAS ID Upgrade ( H. Sadrozinski, P. Allport, N. Unno +25 Institutions)).

“The goal of the program is the industrial pre-production of SSD optimized for sLHC operation and includes both short and long strips.”

“In addition, the RD activity should take into account the needs of the module development program and plan to have sensors available on the required time-scale.”

Outline:

1. Framework of R&D Program

2. Recent Results

3. Future Plans

4. ATLAS07 Submission to HPK

5. Budget

SSD Development for ATLAS Upgrade Tracker

Page 2: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Goal: Identify optimal SSD technology and start commercial production.

P-type promise higher luminosity reach (underdepleted operation)

Concentrate on test pre-rad and post-rad

Electrical Characterization

Charge Collection: CC-V

Devices:

SMART SSD (RD50) Status: p, and n irradiations done, in test

RD50 run with commercial 6” foundry (Micron), n and p irradiation underway

Start work with high volume supplier: HPK

ATLAS06: pilot run for investigation of geometry, n and p planned

ATLAS07: in preparation, PRR at HPK (June) and CERN (ID week July)

SSD Development for the ATLAS Upgrade Tracker:Overview

Page 3: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Design for: 1*1015 neq/cm2 short strips, 4*1015 neq/cm2 long strips (includes 2x safety factor)New: p-type, neutrons

sATLAS Fluences for 3000fb-1

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

0 20 40 60 80 100 120

Radius R [cm]

Flue

nce

neq/

cm2

All: RTF Formulan (5cm poly)pionproton

Page 4: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Previous data: Liverpool FZ allows low initial depletion voltage (<100V) >10 k-cm FZ, Good uniformity, Annealing affects under control

MCz vs. FZ

Adopt p-type FZ as Baselinecontinue to investigate high-resistivity p-type MCz

G. Casse et alVCI ‘04

Page 5: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Surface condition: Interstrip capacitance and Isolation pre-rad and after TIDi-V and breakdown behavior (STD6 Contribution)

Charge collection: Beta source (~30 Hz), 100ns shaping time pos and neg signals.connect electrical parameter C-V with MIP Charge collection(RESMDD06 Contribution)

Annealing studies:Allow for elevated temperature

Development of tools to support testing:

Page 6: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

C(V) ~ 1/dCCE(V) ~ d expected collected charge = 3.5 fC*Co/C(V)At low temps, use low frequency! RT: 10 kHz,-10o C: 400 Hz, -20o C: 250 Hz

M. Petterson et al.RESMDD06

Depletion: C-V and CCE: Temp and Frequency

Page 7: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

SCIPP Measurements on p-type Mczwith neutron irradiated sensors.Absolute prediction of 1/CAgrees well with CCE

Neutrons

CCE / C-V W09 p Mcz 1.7e-15 n/cm^2

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000Bias voltage [V]

Cha

rge

[fC]

cce

1/C -20C 250 Hz

Page 8: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Caveats:Binary vs. Analog (Single-strip vs. Sum?)Median vs. Most probableFZ vs. MCz, Starting Depletion Voltage100 ns vs. 25 ns

Neutrons vs. Protons?

Collected charge

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

0 200 400 600 800 1000Bias Voltage

Col

lect

ed c

harg

e [e

-]Casse et al: FZ, p neq=1.9e15Petterson et al: MCz n 1.7e15 (prelim)Casse et al: FZ, n 1.5e15

Page 9: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Short strips:At target fluence and 500V Bias:Sufficient yield for good signal-to-noise

Charge collectionCollected charge

Vbias =800V

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0.E+00 1.E+15 2.E+15 3.E+15 4.E+15 5.E+15Fluence [1/cm2]

Col

lect

ed c

harg

e[e-

]

Casse et al: FZ, p irr.Petterson et al: MCz n irra(prelim)Casse et al, FZ, n irradiationPetterson et al: MCz n irra(prelim)

Collected chargeVbias = 500V

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0.E+00 1.E+15 2.E+15 3.E+15 4.E+15 5.E+15Fluence [1/cm2]

Col

lect

ed c

harg

e[e-

]

Casse et al: FZ, p irr.Petterson et al: MCz n irra(prelim)Casse et al, FZ, n irradiationPetterson et al: MCz n irra(prelim)

Page 10: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Evidence for Double-Junction instead of “Inversion”.

Wafer: n MCz

1/C SMART n MCz Neutron/Proton irradiated

0

0.005

0.01

0.015

0.02

0 100 200 300 400 500 600

Bias Voltage [V]

1/C

[pF^

1]

176-4 (-20C) n 5.3e14 Louvain

176-2 (-20C) n 4e14 Louvain

176-2 unirradiated

187-4 (-10C) p 1.4e14

Page 11: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Non-uniform doping density in MCz: Simple simulation of parallel capacitors with different depletion voltagesreproduces the 1/C2 curves.

Wafer: MCz SMART

1/C^2 W044-4 10kHz Vdep: 46.0 -> 77.6 V

1.5E-04

1.7E-04

1.9E-04

2.1E-04

2.3E-04

2.5E-04

40 50 60 70 80Bias Voltage [V]

1.C^

2 [p

F-2]

10kHz

sim2

Page 12: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

MCz Wafer Uniformity with CCE: SMART vs. Micron Median Q

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150Bias Voltage [V]

med

Q [f

C]

detector end

detector middle

detector front

Med Q Micron p-type MCz (2552-7-13)

0

1

2

3

4

0 200 400 600 800Bias Voltage [V]

med

Q [f

C]

edgePMFEcenter1/C norm

Med Q: Micron p-type FZ (2551-7-13)

0

1

2

3

4

0 50 100 150Bias Voltage [V]

Med

Q [f

C]

centerfar edgePMFE edge1/C norm

SMART:4.5 cm long

Micron:6 cm long

Charge collection at 3 positions along strips:

Micron has excellent uniformity along strips and across the wafer

Page 13: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

New data: CCE annealing for n-type and p-type MCz similar time structure as C-V

Annealing

1000min @60 oC = 514 days @RT

M. Petterson et alIrradiated with 26 MeV p to ~2*1014 cm-2

Binary readout 100ns, 90Sr beta source

Bias voltage for 90% efficiency

020406080

100120140160180

1 10 100 1000 10000 100000Anneal time @60C [min]

Bia

s vo

ltage

[V]

p MCz 253-4

Bias Voltage for 90% effiency

020406080

100120140160180200

1 10 100 1000 10000 100000Anneal time @60C [min]

Bia

s vo

ltage

[V]

n MCz 187-4

Page 14: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Continued Development of tools to support testing:Mate SCT hybrid (20ns ) with custom quick-disconnect Sensor boardWork on SCT DAQ: negative pulsesImprove thermal management

Testing of MICRON mini-SSD pre- and post-radIssue: Evaluate role of resistivity of waferFZ: ~20k-cm (Micron) vs. 8 k-cm (HPK), MCz ~ 2k-cm (Micron and HPK) Initially Depletion Voltage: FZ 60 V (Micron) vs. 140 V (HPK) MCz ~ 500 V (Micron and HPK)

Testing of ATLAS06, ATLAS07 (HPK), ATLASxx mini-SSDSurface condition pre- and post-rad (p, n, ): Optimize isolation and capacitanceCharge collection pre- and post-rad (p, n, ): Optimize wafer resistivity

Planned activity in FY ’08 and beyond

Page 15: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Allows both electrical and dynamic testing of sensors pre-rad/post-rad/post-annealBonding is bottle-neck: use connectors!

Quick-Disconnect Sensor Board

Page 16: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Cooling of irradiated sensors required both for electrical and dynamic testing.Present mode of spilling LN2 into a thermal enclosure is reliable, but clumsy / wasteful.

Peltier based system promises good uniformity.

Peltier based Cooling System

Temp vs. Heat Removed

Chiller 0C, Peltier Current: 4.40 Amps

-25

-24

-23

-22

-21

-20

0 0.2 0.4 0.6 0.8

Heat Input [W]

Tem

pera

ture

[o C]

Page 17: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Test Program: with 1 cm x 1 cm test structures

Testing of ATLAS Upgrade Sensors

Company un-diced wafers i-V and C-V, processing control test structures, R(poly).Single-strips: C(coupl), R(bias), shorts

ATLAS SSD / Test diodes Electrical: both pre-rad and post-radi-VC-VCintRintR(Al)

CCE post-rad only ?Beta sourceLaserTSC

Irradiationsn Lubljana April - Dec.p CERN May - Oct PSI August '07

Page 18: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Irradiation Program: Neutrons

Lubljana: (Marko Mikuz)

- available all year upon short notice (week)

- flux > 1012 n_eq/(cm2.s), downgradeable by reactor power

- TID ~ 100 kRad for 1014 n_eq/cm2 (> kRad/s)

- sample width ~60 mm, length ~150 mm

- bias & cooling - difficult

Suitable for irradiations of bare sensors, depending on the design we adopt (width !).

For modules need to be careful, activation issues might be serious at the target fluences. The sensors (Si, Al) cool down quite efficiently (days), so mounting on evaluation boards/modules could be done post-irradiation.

Page 19: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Irradiation Program: Neutrons

Louvain: (Otilia Militaru)

UC Santa Cruz had two runs in late 2006 (2*1014 and 2*1015 ).

Damage coefficients about 2x larger than at 1 MeV.

Good dosimetry possible

TID ~1%?

Cooling possible

Page 20: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Irradiation Program: PionsPSI in August 2007 with RD50, CMS

Contact: Tilman Rohe, PSI

Target fluence about 2*1015

Limited number of small devices ~40?

Irradiation Program: ProtonsRD50 Runs in 2007: May, July, September

Contact: Michael Moll, Maurice Glasser

Page 21: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

ATLAS07• Purpose

– Full square– Usage in 2008

• Delivery target– Dec. 2007

• Wafer– 150 mm p-FZ(100)– 320 µm thick

• n-strip isolation– Individual p-stop

• Stereo– 40 mrad– Integrated in half

area– Dead area: 2 mm • Strip segments

– 4 for SS (but still true for 4% limit?)– LS: segments wire-bonded

Page 22: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

ATLAS07 specification ATLAS07

Wafer size 150 mm Thickness 320 µm Orientation <100> Type P Ingot FZ Resistivity >3 k cm Outer dimension 98.99x98.99 mm2

Sensitive implant edge dimension 96.99x96.99 mm2

Strip segments 4 Strip segement length (approximate) 24 mm Strip implant N Strip pitch 75.50 µm Strip implant Width 16 µm Strip bias resistor Polysilicon Strip bias resistnace (Rb) 1.5+/-0.5 M Strip readout coupling AC Strip readout metal Pure Aluminium Strip readout metal width 20 µm Strip AC coupling capacitance >20 pF/cm Strip isolation >2xRb at 1/2xVop Strip isolation method Individual p-stop Gap between strip segments <160µm (rail)

<70µm (no rail) Design operation voltage 800V Microdischarge onset voltage >600V Maximum operation voltage (*) 600V Radiation tolerance 9x1014 1-MeV neq/cm2

(*) The voltage rating of the extenal high voltage cable is 500V and tested 1 KV

• Issues remaining– location of Bonding

pads – Most likely to add

one more pad at centre of strip

• 5 pads per strip

Page 23: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

ATLAS07 Fabrication

• Schedule from HPK– Delivery Dec 07– Fabrication incl. testing (3 m) Sep 07– Acquiring wafers (2 m) Jul 07– Designing masks (2 m) Jul 07– Finalizing specifications in Jul 07– Wafer specification Beg Jun

07• p-type FZ vs. MCZ

• Financing– Pro rata basis

Page 24: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

ATLAS07 Review• Purpose

– To review and finalize the design and specification of the upgrade silicon microstrip sensor to be fabricated by the end of 2007 (ATLAS07)

– ATLAS07 serves sensor needs in 2008• till ATLAS08 comes in the end of 2008

• Review date– 2nd July, during the ID week at CERN

• Steps to the review– Mid May: Pre-meeting– 18-19 June: Pre-meeting at KEK

• 20 June: Meeting with HPK in Japan– 2nd July: Review date

Page 25: SSD Development for ATLAS Upgrade Tracker

Hartmut F.-W. Sadrozinski, SCIPP: US-ATLAS Upgrade Meeting 5/3/07

Sensor Technology BudgetFY 2008 WBS 4.1.1.2.1Labor Enginer Tech Tech UG Tech Tech

Activity FTE Layout Assembly Assembly Testing Testing TestingSSDShort strip SSD SSD SamplesTest structuresElectrical Characterization 0.45 0.23 0.23Assembly 0.28 0.28Efficiency Measurements 0.57 0.28 0.28Irradiations 0.28 0.14 0.14Electrical Characterization 0.28 0.14 0.14Efficiency Measurements 0.57 0.28 0.28DAQ 0.50 0.25 0.25Sensor BoardDesign+Layout 0.11 0.11Fab Parts Test 0.11 0.11Assembly 0.07 0.07Total Labor 3.24 0.11 0.07 0.40 1.33 0.68 0.65

Labor 133.552Domestic travel 4.000Foreign Travel 6.000M&S 37.000Total direct 180.552Indirect 26% 46.944Total FY2008 227.496