35
1 Theorem Proving and Model Checking in PVS 15-820A Proving Software with PVS Edmund Clarke Daniel Kroening Carnegie Mellon University

1 Theorem Proving and Model Checking in PVS 15-820A Proving Software with PVS Edmund Clarke Daniel Kroening Carnegie Mellon University

Embed Size (px)

Citation preview

1

Theorem Proving and Model Checking in PVS

15-820AProving Software with PVS

Edmund Clarke

Daniel Kroening

Carnegie Mellon University

2

Theorem Proving and Model Checking in PVS

Outline

• Modeling Software with PVS– Complete Example for

Sequential Software,including proof

– The Magic GRIND– Modularization

3

Theorem Proving and Model Checking in PVS

Modeling Software with PVS

C: TYPE = [# a: [below(10)->integer], i: nat #]

C: TYPE = [# a: [below(10)->integer], i: nat #]

1. Define Type for STATEint a[10];unsigned i;

int main() { . . . }

int a[10];unsigned i;

int main() { . . . }

A

4

Theorem Proving and Model Checking in PVS

Modeling Software with PVS

A

2. Translate your program into goto program

int a[10];unsigned i,j,k;

int main() { i=k=0;

while(i<10) { i++; k+=2; }

j=100; k++;}

int a[10];unsigned i,j,k;

int main() { i=k=0;

while(i<10) { i++; k+=2; }

j=100; k++;}

int a[10];unsigned i,j,k;

int main() { L1: i=k=0;

L2: if(!(i<10)) goto L4; L3: i++; k+=2; goto L2;

L4: j=100; k++;}

int a[10];unsigned i,j,k;

int main() { L1: i=k=0;

L2: if(!(i<10)) goto L4; L3: i++; k+=2; goto L2;

L4: j=100; k++;}

5

Theorem Proving and Model Checking in PVS

Modeling Software with PVS

A

3. Partition your program into basic blocks

int a[10];unsigned i,j,k;

int main() { L1: i=k=0;

L2: if(!(i<10)) goto L4; L3: i++; k+=2; goto L2;

L4: j=100; k++;}

int a[10];unsigned i,j,k;

int main() { L1: i=k=0;

L2: if(!(i<10)) goto L4; L3: i++; k+=2; goto L2;

L4: j=100; k++;}

L1(c: C):C= c WITH [i:=0, k:=0]

L2(c: C):C= c

L3(c: C):C= c WITH [i:=c`i+1, k:=c`k+2]

L4(c: C):C= c WITH [j:=100, k:=c`k+1]

L1(c: C):C= c WITH [i:=0, k:=0]

L2(c: C):C= c

L3(c: C):C= c WITH [i:=c`i+1, k:=c`k+2]

L4(c: C):C= c WITH [j:=100, k:=c`k+1]

4. Write transition function for each basic block

6

Theorem Proving and Model Checking in PVS

Modeling Software with PVS

5. Combine transition functions using a program counter

int a[10];unsigned i,j,k;

int main() { L1: i=k=0;

L2: if(!(i<10)) goto L4; L3: i++; k+=2; goto L2;

L4: j=100; k++;}

int a[10];unsigned i,j,k;

int main() { L1: i=k=0;

L2: if(!(i<10)) goto L4; L3: i++; k+=2; goto L2;

L4: j=100; k++;}

PCt: TYPE = { L1, L2, L3, L4, END }PCt: TYPE = { L1, L2, L3, L4, END }

t(c: C): C= CASES c`PC OF L1: L1(c) WITH [PC:=L2], L2: L2(c) WITH [PC:= IF NOT (c`i<10) THEN L4 ELSE L3 ENDIF, L3: L3(c) WITH [PC:=L2], L4: L4(c) WITH [PC:=END], END: c ENDCASES

t(c: C): C= CASES c`PC OF L1: L1(c) WITH [PC:=L2], L2: L2(c) WITH [PC:= IF NOT (c`i<10) THEN L4 ELSE L3 ENDIF, L3: L3(c) WITH [PC:=L2], L4: L4(c) WITH [PC:=END], END: c ENDCASES

A

7

Theorem Proving and Model Checking in PVS

Modeling Software with PVS

A

6. Define Configuration Sequence

c(T: nat, initial: C):RECURSIVE C= IF T=0 THEN initial WITH [PC:=L1] ELSE t(c(T-1, initial)) ENDIF MEASURE T

c(T: nat, initial: C):RECURSIVE C= IF T=0 THEN initial WITH [PC:=L1] ELSE t(c(T-1, initial)) ENDIF MEASURE T

7. Now prove properties about PC=LEND states

program_correct: THEOREM FORALL (initial: C): FORALL (T: nat | c(T)`PC=LEND): c(T)`result=correct_result(initial)

program_correct: THEOREM FORALL (initial: C): FORALL (T: nat | c(T)`PC=LEND): c(T)`result=correct_result(initial)

8

Theorem Proving and Model Checking in PVS

C: TYPE = [# size: nat, a: [nat -> integer], x: integer, i: nat, result: bool, PC: PCt #]

C: TYPE = [# size: nat, a: [nat -> integer], x: integer, i: nat, result: bool, PC: PCt #]

Example I

bool find_linear(unsigned size, const int a[], int x) { unsigned i;

for(i=0; i<size; i++) if(a[i]==x) return TRUE;

return FALSE;}

bool find_linear(unsigned size, const int a[], int x) { unsigned i;

for(i=0; i<size; i++) if(a[i]==x) return TRUE;

return FALSE;}

A

1. Define Type for STATE

9

Theorem Proving and Model Checking in PVS

bool find_linear(unsigned size, const int a[], int x) { L1: i=0; L2: if(!(i<size)) goto L8; L3: if(!(a[i]==x)) goto L6; L4: result=TRUE; L5: goto LEND; L6: i++; L7: goto L2; L8: result=FALSE; LEND:; return result;}

bool find_linear(unsigned size, const int a[], int x) { L1: i=0; L2: if(!(i<size)) goto L8; L3: if(!(a[i]==x)) goto L6; L4: result=TRUE; L5: goto LEND; L6: i++; L7: goto L2; L8: result=FALSE; LEND:; return result;}

Example II

bool find_linear(unsigned size, const int a[], int x) { unsigned i;

for(i=0; i<size; i++) if(a[i]==x) return TRUE;

return FALSE;}

bool find_linear(unsigned size, const int a[], int x) { unsigned i;

for(i=0; i<size; i++) if(a[i]==x) return TRUE;

return FALSE;}

A

2. Translate your program into goto program

10

Theorem Proving and Model Checking in PVS

Example III/IV

A

3. Partition your program into basic blocks

L1(c: C):C=c WITH [i:=0] L2(c: C):C=c L3(c: C):C=c L4(c: C):C=c WITH [result:=TRUE] L5(c: C):C=c L6(c: C):C=c WITH [i:=c`i+1] L7(c: C):C=c L8(c: C):C=c WITH [result:=FALSE]

L1(c: C):C=c WITH [i:=0] L2(c: C):C=c L3(c: C):C=c L4(c: C):C=c WITH [result:=TRUE] L5(c: C):C=c L6(c: C):C=c WITH [i:=c`i+1] L7(c: C):C=c L8(c: C):C=c WITH [result:=FALSE]

4. Write transition function for each basic block

bool find_linear (unsigned size, const int a[], int x) {L1: i=0;L2: if(!(i<size)) goto L8;L3: if(!(a[i]==x)) goto L6;L4: result=TRUE;L5: goto LEND;L6: i++;L7: goto L2;L8: result=FALSE;LEND:;return result;}

bool find_linear (unsigned size, const int a[], int x) {L1: i=0;L2: if(!(i<size)) goto L8;L3: if(!(a[i]==x)) goto L6;L4: result=TRUE;L5: goto LEND;L6: i++;L7: goto L2;L8: result=FALSE;LEND:;return result;}

11

Theorem Proving and Model Checking in PVS

Example V

5. Combine transition functions using a program counter

t(c: C):C=CASES c`PC OF L1: L1(c) WITH [PC:=L2], L2: L2(c) WITH [PC:= IF NOT c`i < c`size THEN L8 ELSE L3 ENDIF], L3: L3(c) WITH [PC:= IF NOT c`a(c`i)=c`x THEN L6 ELSE L4 ENDIF], L4: L4(c) WITH [PC:=L5], L5: L5(c) WITH [PC:=LEND], L6: L6(c) WITH [PC:=L7], L7: L7(c) WITH [PC:=L2], L8: L8(c) WITH [PC:=LEND], LEND: cENDCASES

t(c: C):C=CASES c`PC OF L1: L1(c) WITH [PC:=L2], L2: L2(c) WITH [PC:= IF NOT c`i < c`size THEN L8 ELSE L3 ENDIF], L3: L3(c) WITH [PC:= IF NOT c`a(c`i)=c`x THEN L6 ELSE L4 ENDIF], L4: L4(c) WITH [PC:=L5], L5: L5(c) WITH [PC:=LEND], L6: L6(c) WITH [PC:=L7], L7: L7(c) WITH [PC:=L2], L8: L8(c) WITH [PC:=LEND], LEND: cENDCASES

A

bool find_linear (unsigned size, const int a[], int x) {L1: i=0;L2: if(!(i<size)) goto L8;L3: if(!(a[i]==x)) goto L6;L4: result=TRUE;L5: goto LEND;L6: i++;L7: goto L2;L8: result=FALSE;LEND:;return result;}

bool find_linear (unsigned size, const int a[], int x) {L1: i=0;L2: if(!(i<size)) goto L8;L3: if(!(a[i]==x)) goto L6;L4: result=TRUE;L5: goto LEND;L6: i++;L7: goto L2;L8: result=FALSE;LEND:;return result;}

12

Theorem Proving and Model Checking in PVS

Example VI

A

6. Define Configuration Sequence

c(T: nat, initial: C):RECURSIVE C= IF T=0 THEN initial WITH [PC:=L1] ELSE t(c(T-1, initial)) ENDIF MEASURE T

c(T: nat, initial: C):RECURSIVE C= IF T=0 THEN initial WITH [PC:=L1] ELSE t(c(T-1, initial)) ENDIF MEASURE T

7. Now prove properties about PC=LEND states

program_correct: THEOREM FORALL (initial: C): FORALL (T: nat | c(T)`PC=LEND): c(T)`result=correct_result(initial)

program_correct: THEOREM FORALL (initial: C): FORALL (T: nat | c(T)`PC=LEND): c(T)`result=correct_result(initial)

What is the correct result?

What is the correct result?

13

Theorem Proving and Model Checking in PVS

C: TYPE = [# size: nat, a: [nat -> integer], x: integer, i: nat, result: bool, PC: PCt #]

C: TYPE = [# size: nat, a: [nat -> integer], x: integer, i: nat, result: bool, PC: PCt #]

Example IV

correct_result(c: C): bool= EXISTS (j: below(c`size)): c`a(j)=c`xcorrect_result(c: C): bool= EXISTS (j: below(c`size)): c`a(j)=c`x

A

OK!LET’S PROVE

THIS!

OK!LET’S PROVE

THIS!

14

Theorem Proving and Model Checking in PVS

C: TYPE = [# size: nat, a: [nat -> integer], x: integer, i: nat, result: bool, PC: PCt #]

C: TYPE = [# size: nat, a: [nat -> integer], x: integer, i: nat, result: bool, PC: PCt #]

Something useful first…

A

program_correct: THEOREM FORALL (initial: C): FORALL (T: nat | c(T)`PC=LEND): c(T)`result=correct_result(initial)

program_correct: THEOREM FORALL (initial: C): FORALL (T: nat | c(T)`PC=LEND): c(T)`result=correct_result(initial)

This relates initial state and

final state

We need to say:c(T)`a = initial`a Æc(T)`x = initial`x Æ

c(T)`size = initial`size

OR: The program only changes i, result, PC

We need to say:c(T)`a = initial`a Æc(T)`x = initial`x Æ

c(T)`size = initial`size

OR: The program only changes i, result, PC

15

Theorem Proving and Model Checking in PVS

invar_constants(T: nat, initial: C): bool= c(T, initial)`size=initial`size AND c(T, initial)`a =initial`a AND c(T, initial)`x =initial`x;

constants: LEMMA FORALL (initial:C, T: nat): invar_constants(T, initial)

invar_constants(T: nat, initial: C): bool= c(T, initial)`size=initial`size AND c(T, initial)`a =initial`a AND c(T, initial)`x =initial`x;

constants: LEMMA FORALL (initial:C, T: nat): invar_constants(T, initial)

Something useful first…

A

We need to say:c(T)`a = initial`a Æc(T)`x = initial`x Æ

c(T)`size = initial`size

OR: The program only changes i, result, PC

We need to say:c(T)`a = initial`a Æc(T)`x = initial`x Æ

c(T)`size = initial`size

OR: The program only changes i, result, PC

Proof:Induction on T

+ GRIND

Proof:Induction on T

+ GRIND next: the real invariant…

16

Theorem Proving and Model Checking in PVS

FORALL (j: below(c`i)): c`a(j)/=c`x FORALL (j: below(c`i)): c`a(j)/=c`x

Loop Invariant

bool find_linear(unsigned size, const int a[], int x) { unsigned i;

for(i=0; i<size; i++) if(a[i]==x) return TRUE;

return FALSE;}

bool find_linear(unsigned size, const int a[], int x) { unsigned i;

for(i=0; i<size; i++) if(a[i]==x) return TRUE;

return FALSE;}

A

17

Theorem Proving and Model Checking in PVS

The Invariant

A

invar(c: C):bool=CASES c`PC OF L1: % i=0; L2: % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: % goto L2; L8: % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: % i=0; L2: % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: % goto L2; L8: % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

Beginningof the Loop

Endof the Loop

18

Theorem Proving and Model Checking in PVS

The Invariant

A

invar(c: C):bool=CASES c`PC OF L1: % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

What here?What here?

19

Theorem Proving and Model Checking in PVS

The Invariant

A

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

Exitingthe Loop

Exitingthe Loop

Exitingthe Loop

Exitingthe Loop

20

Theorem Proving and Model Checking in PVS

The Invariant

A

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

What here?What here?

21

Theorem Proving and Model Checking in PVS

The Invariant

A

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: c`i<c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: c`i<c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

What here?What here?

22

Theorem Proving and Model Checking in PVS

The Invariant

A

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: c`i<c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: FORALL (j: below(c`i+1)): c`a(j)/=c`x, % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: c`i<c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(a[i]==x)) goto L6; L4: % result=TRUE; L5: % goto LEND; L6: FORALL (j: below(c`i+1)): c`a(j)/=c`x, % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

What here?What here?

23

Theorem Proving and Model Checking in PVS

The Invariantinvar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: c`i<c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(a[i]==x)) goto L6; L4: c`i<c`size AND c`a(c`i)=c`x, % result=TRUE; L5: c`i<c`size AND c`a(c`i)=c`x AND c`result=true, % goto LEND; L6: FORALL (j: below(c`i+1)): c`a(j)/=c`x, % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

invar(c: C):bool=CASES c`PC OF L1: TRUE, % i=0; L2: FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(i<size)) goto L8; L3: c`i<c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % if(!(a[i]==x)) goto L6; L4: c`i<c`size AND c`a(c`i)=c`x, % result=TRUE; L5: c`i<c`size AND c`a(c`i)=c`x AND c`result=true, % goto LEND; L6: FORALL (j: below(c`i+1)): c`a(j)/=c`x, % i++; L7: FORALL (j: below(c`i)): c`a(j)/=c`x, % goto L2; L8: c`i>=c`size AND FORALL (j: below(c`i)): c`a(j)/=c`x, % result=FALSE; LEND: c`result <=> EXISTS (j: below(c`size)): c`a(j)=c`xENDCASES

24

Theorem Proving and Model Checking in PVS

The Invariant

DARING CLAIM

““Once you have found the invariant,Once you have found the invariant,the proof is done.”the proof is done.”

We now have the invariant.Lets do the actual proof.

Who believes we are done?

A

25

Theorem Proving and Model Checking in PVS

The Gentzen Sequent

{-1} i(0)`reset

{-2} i(4)`reset

|-------

{1} i(1)`reset

{2} i(2)`reset

{3} (c(2)`A AND NOT c(2)`B)

Disjunction (Consequents)

Conjunction (Antecedents)

Or: Reset in cycles 0, 4 is on, and off in 1, 2.Show that A and not B holds in cycle 2.

26

Theorem Proving and Model Checking in PVS

The Magic of (GRIND)

• Myth: Grind does it all…• Reality:

• Use it when:– Case splitting, skolemization, expansion, and

trivial instantiations are left• Does not do induction• Does not apply lemmas

“... frequently used to automatically complete a proof

branch…”

27

Theorem Proving and Model Checking in PVS

The Magic of (GRIND)

• If it goes wrong…– you can get unprovable subgoals– it might expand recursions forever

• How to abort?– Hit Ctrl-C twice, then (restore)

• How to make it succeed?– Before running (GRIND), remove unnecessary

parts of the sequent using (DELETE fnum).It will prevent that GRIND makes wrong instantiations and expands the wrong definitions.

28

Theorem Proving and Model Checking in PVS

NOW LET’S PROVE THE INVARIANT

29

Theorem Proving and Model Checking in PVS

A word on automation…

A

• The generation of C, t, and c can be trivially automated

• Most of the invariant can be generated automatically – all but the actual loop invariant (case L7/L2)

• The proof is automatic unless quantifier instantiation is required

30

Theorem Proving and Model Checking in PVS

Modularizationt(c: C):C=CASES c`PC OF L1: L1(c) WITH [PC:=L2], L2: L2(c) WITH [PC:= IF NOT c`i < c`size THEN L8 ELSE L3 ENDIF], L3: L3(c) WITH [PC:= IF NOT c`a(c`i)=c`x THEN L6 ELSE L4 ENDIF], L4: L4(c) WITH [PC:=L5], L5: L5(c) WITH [PC:=LEND], L6: L6(c) WITH [PC:=L7], L7: L7(c) WITH [PC:=L2], L8: L8(c) WITH [PC:=LEND], LEND: cENDCASES

t(c: C):C=CASES c`PC OF L1: L1(c) WITH [PC:=L2], L2: L2(c) WITH [PC:= IF NOT c`i < c`size THEN L8 ELSE L3 ENDIF], L3: L3(c) WITH [PC:= IF NOT c`a(c`i)=c`x THEN L6 ELSE L4 ENDIF], L4: L4(c) WITH [PC:=L5], L5: L5(c) WITH [PC:=LEND], L6: L6(c) WITH [PC:=L7], L7: L7(c) WITH [PC:=L2], L8: L8(c) WITH [PC:=LEND], LEND: cENDCASES

bool find_linear (unsigned size, const int a[], int x) {L1: i=0;L2: if(!(i<size)) goto L8;L3: if(!(a[i]==x)) goto L6;L4: result=TRUE;L5: goto LEND;L6: i++;L7: goto L2;L8: result=FALSE;LEND:;return result;}

bool find_linear (unsigned size, const int a[], int x) {L1: i=0;L2: if(!(i<size)) goto L8;L3: if(!(a[i]==x)) goto L6;L4: result=TRUE;L5: goto LEND;L6: i++;L7: goto L2;L8: result=FALSE;LEND:;return result;}

How about a program with a 1000 basic

blocks?= 1000 cases?

How about a program with a 1000 basic

blocks?= 1000 cases?

A

• Better not• Remedy: Modularize the program and the proof• Idea: find_linear is a function in the C

program, make it a function in PVS as wellC C

• Functions in PVS must be total, thus, this requires proof of termination

31

Theorem Proving and Model Checking in PVS

Modularization

A

epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p)) epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))

find_linear(start: C): C= c( epsilon! (T: nat): c(T, start)`PC=LEND , start)find_linear(start: C): C= c( epsilon! (T: nat): c(T, start)`PC=LEND , start)

a T such that c(T, start)`PC=LEND

"epsilon! (x:t): p(x)”is translated to

"epsilon(LAMBDA (x:t): p(x))”

"epsilon! (x:t): p(x)”is translated to

"epsilon(LAMBDA (x:t): p(x))”

THIS IS WHATREQUIRES

TERMINATION

32

Theorem Proving and Model Checking in PVS

Modularization

A

termination: THEOREM FORALL (initial: C): EXISTS (T: nat): c(T, initial)`PC=LEND

termination: THEOREM FORALL (initial: C): EXISTS (T: nat): c(T, initial)`PC=LEND

epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p)) epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))

allows to show the left hand side of

the right hand side then says

c(epsilon! (T: nat): c(T, start)`PC=LEND, start)`PC=LENDc(epsilon! (T: nat): c(T, start)`PC=LEND, start)`PC=LEND

33

Theorem Proving and Model Checking in PVS

Modularization

A

find_linear(start: C): C= c( epsilon! (T: nat): c(T, start)`PC=LEND , start)find_linear(start: C): C= c( epsilon! (T: nat): c(T, start)`PC=LEND , start)

What to prove about it?

find_linear_correct: THEOREM FORALL (c: C): LET new=find_linear(c) IN new=c WITH [result:=correct_result(c)]

find_linear_correct: THEOREM FORALL (c: C): LET new=find_linear(c) IN new=c WITH [result:=correct_result(c)]??What is missing?

34

Theorem Proving and Model Checking in PVS

Modularization

A

find_linear(start: C): C= c( epsilon! (T: nat): c(T, start)`PC=LEND , start)find_linear(start: C): C= c( epsilon! (T: nat): c(T, start)`PC=LEND , start)

What to prove about it?

find_linear_correct: THEOREM FORALL (c: C): LET new=find_linear(c) IN new=c WITH [result:=correct_result(c), PC:=new`PC, i:=new`i]

find_linear_correct: THEOREM FORALL (c: C): LET new=find_linear(c) IN new=c WITH [result:=correct_result(c), PC:=new`PC, i:=new`i]

“All variables but result, PC, and i are unchanged,and result is the correct result.”

35

Theorem Proving and Model Checking in PVS

NOW LET’S PROVE THE THEOREM