50
1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University [email protected]

1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University [email protected]

Embed Size (px)

Citation preview

Page 1: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

1

Queueing Theory

Frank Y. S. LinInformation Management Dept.

National Taiwan University

[email protected]

Page 2: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

2

References Leonard Kleinrock, “Queueing Systems

Volume I: Theory”, New York: Wiley, 1975-1976.

D. Gross and C. M. Harris, “Fundamentals of Queueing Theory”, New York: Wiley, 1998.

Page 3: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

3

Agenda Introduction Stochastic Process General Concepts M/M/1 Model M/M/1/K Model Discouraged Arrivals M/M/∞ and M/M/m Models M/M/m/m Model

Page 4: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

4

Introduction

Page 5: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

5

Queueing System A queueing system can be described as customers

arriving for service, waiting for service if it is not immediate, and if having waited for service, leaving the system after being served.

Page 6: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

6

Why Queueing Theory

Performance Measurement Average waiting time of customer / distribution of

waiting time. Average number of customers in the system /

distribution of queue length / current work backlog. Measurement of the idle time of server / length of an

idle period. Measurement of the busy time of server / length of a

busy period. System utilization.

Page 7: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

7

Why Queueing Theory (cont’d) Delay Analysis Network Delay =

Queueing Delay + Propagation Delay (depends on the distance) + Node Delay Processing Delay

(independent of packet length, e.g. header CRC check)

Adapter Delay (constant)

Page 8: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

8

Characteristics of Queueing Process

Arrival Pattern of Customers Probability distribution Patient / impatient (balked) arrival Stationary / nonstationary

Service Patterns Probability distribution State dependent / independent service Stationary / nonstationary

Page 9: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

9

Characteristics of Queueing Process (cont’d)

Queueing Disciplines First come, first served (FCFS) Last come, first served (LCFS) Random selection for service (RSS) Priority queue Preemptive / nonpreemptive

System Capacity Finite / infinite waiting room.

Page 10: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

10

Characteristics of Queueing Process (cont’d)

Number of Service Channels Single channel / multiple channels Single queue / multiple queues

Stages of Service Single stage (e.g. hair-styling salon) Multiple stages (e.g. manufacturing process) Process recycling or feedback

Page 11: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

11

Notation A queueing process is described by A/B/X/Y/Z

Page 12: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

12

Notation (cont’d) For example, M/D/2/∞/FCFS indicates a

queueing process with exponential inter-arrival time, deterministic service times, two parallel servers, infinite capacity, and first-come, first-served queueing discipline.

Y and Z can be omitted if Y = ∞ and Z = FCFS.

Page 13: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

13

Stochastic Process

Page 14: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

14

Stochastic Process Stochastic process: any collection of random

variables Χ(t), t T, on a common probability space where t is a subset of time.

Continuous / discrete time stochastic process Example: Χ(t) denotes the temperature in the class on t

= 7:00, 8:00, 9:00, 10:00, … (discrete time) We can regard a stochastic process as a family of

random variables which are “indexed” by time. For a random process X(t), the PDF is denoted by

FX(x;t) = P[X(t) <= x]

Page 15: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

15

Some Classifications of Stochastic Process

Stationary Processes: independent of time

FX (x; t + τ) = FX (x; t)

Independent Processes: independent variables

FX (x; t) = FX1,…, Xn(x1,…, xn ; t1,…,tn)

= FX1(x1; t1) …FXn(xn; tn)

Markov Processes: the probability of the next state depends only upon the current state and not upon any previous states.

P[X(tn+1) = xn+1 | X(tn) = xn, …., X(t1) = x1]

= P[X(tn+1) = xn+1 | X(tn) = xn]

Page 16: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

16

Some Classifications of Stochastic Process (cont’d)

Birth-death Processes: state transitions take place

between neighboring states only. Random Walks: the next position the process occupies

is equal to the previous position plus a random variable whose value is drawn independently from an arbitrary distribution.

Page 17: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

17

General Concepts

Page 18: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

18

Continuous-time Memoryless Property

If X ~Exp(λ), for any a,b > 0,

PP[[X > a + b | X > aX > a + b | X > a] ] = P= P[[X > bX > b]]

Proof:

P[X > a + b | X > a]

[ ]P X a b X a

X a b X aP X a

( )1(

1)

a bx b

ax

P X a b F a b ee

P X a FP

eX

ab

Page 19: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

19

Global Balance Equation Define Pi = P[system is in state i]

Pij = P[get into state j right after leaving state i]

rate out of state j = rate into state j

0 0( ) ( )

j ij i iji ii j i j

P P P P

Page 20: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

20

General Balance Equation Define S = a subset of the state space

0 0 0 0( ) ( ) ( ) ( )

j ij i ijj i i jj s i s i s j s

P P P P

S

j

rate in = rate out

Page 21: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

21

General Equilibrium Solution Notation:

Pk = the probability that the system contains k customer

s (in state k)

λk= the arrival rate of customers when the system is in state k.

μk= the service rate when the system is in state k.

0

1kk

P

Page 22: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

22

General Equilibrium Solution (cont’d)

Consider state k:

k-1 k k+1

λk-1

μk μk+1

λk

1 1k k k kP P

rate in rate out

11

kk k

k

P P

11

kk k

k

P P

.

.

.

11 2 0

0 001 1 1

kk k i

kik k i

P P P

#

Page 23: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

23

General Equilibrium Solution (cont’d)

0

1kk

P

1

00 0 1

1k

i

k i i

P

0 1

0 0 1

1

1k

i

k i i

P

0

,k kk

NP T

1waiting time w T

Page 24: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

24

Little’s Result = average number of customers in the system T = system time (service time + queueing time) λ= arrival rate

N

N T

Black box

N

System time T

Queueing time

Service time

Page 25: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

25

M/M/1 Model

Single Server, Single Queue

(The Classical Queueing System)

Page 26: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

26

M/M/1 Queue Single server, single queue, infinite population:

Interarrival time distribution:

Service time distribution

Stability condition λ < μλ < μ

( ) tp t e

00

0 0( ) 1

t ttp t t e dt e

k

k

Page 27: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

27

M/M/1 Queue (cont’d) System utilization

Define state Sn = n customers in the system (n-1 in the queue and 1 in service)

S0 = empty system

= P[system is busy], 1- P[system is idel]

rate out

rate in

S

Page 28: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

28

M/M/1 Queue (cont’d) Define pn = P[n customers in the system]

(rate in = rate out)

Since

1n np p

1n n np p p

11 0

nnp p

0

1ii

p

00

1n

i

p

00

1n

i

p

0 1 , (1 )nnp p

#

Page 29: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

29

M/M/1 Queue (cont’d) Average number of customers in the system

(1 ) kN k (1 ) kk (1 ) /kd d (1 ) kd

d

1(1 )

1

d

d

1

1N

#

Page 30: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

30

M/M/1 Queue (cont’d) Average system time

P[ ≧ k customers in the system]

(Little’s Result)

NT

(1 ) (1 )1

ki k

i k

#

1/ 111

Page 31: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

31

M/M/1/K Model

Single Server, Finite Storage

Page 32: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

32

M/M/1/K Model The system can hold at most a total of K

customers (including the customer in service)λk = λ if k < K

0 if k K

μk = μ

Page 33: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

33

M/M/1/K Model (cont’d)1

0 00

kk

ki

P P P k K

0kP k K

1

0 11

1 /1 ( / ) 0

1 ( / )

Kk

Kk

P k K

0 otherwise

Page 34: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

34

Discouraged Arrivals

Page 35: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

35

Discouraged Arrivals Arrivals tend to get discouraged when more and

more people are present in the system.

1k k

k

Page 36: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

36

Discouraged Arrivals (cont’d)

1

0 00

/( 1) 1/

!

kk

ki

iP P P

k

0

1

11

1 /!

k

k

P e

k

/

!

k

kP ek

N

Page 37: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

37

Discouraged Arrivals (cont’d)

( / )

0 0

( / )

1 !k kk k

P ek k

( / )01 ( , 1 )e P

/

/

(1 )

NT

e

Page 38: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

38

M/M/∞ and M/M/m

M/M/∞ - Infinite Servers, Single Queue

(Responsive Servers)

M/M/m - Multiple Servers, Single Queue

(The m-Server Case)

Page 39: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

39

M/M/∞ Queue

k

k k

There is always a new server available for each arriving customer.

Page 40: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

40

M/M/∞ Queue (cont’d)1

/0

0

( / )

( 1) !

kk

ki

P P ei k

N

1T

(Little’s Result)

Page 41: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

41

M/M/m Queue The M/M/m queue

An M/M/m queue is shorthand for a single queue served by multiple servers.

Suppose there are m servers waiting for a single line. For each server, the waiting time for a queue is a system with service rateμ and arrival rate λ/m.

The M/M/1 analysis has been done, at risk conclusion:

delay =

throughput

1

/ n

/ n

n

Page 42: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

42

M/M/m Queue (cont’d)

λk = λ

μk = kμ if k m

mμ if k > m

For k m

For k > m

0 0

1( )

2 !k

kp p pk k

0 0

1 1( ) ( )

2 !k k n

kp p pn n n n

Page 43: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

43

M/M/n Queue (cont’d)

P[queueing] =

Total system time =

0

1ii

p

0 1

0

1

( ) ( ) 1! ! (1 )

k nn

ik

p wherenp np n

pk n

kk m

p

02

1 (/ )

( 1)!( )

n

pn n

Page 44: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

44

Comparisons (cont’d) M/M/1 v.s M/M/4

If we have 4 M/M/1 systems: 4 parallel communication links that can each handle 50 pps (μ), arrival rate λ = 25 pps per queue.

average delay = 40 ms.

Whereas for an M/M/4 system,

average delay = 21.7 ms.

Page 45: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

45

Comparisons (cont’d) Fast Server v.s A Set of Slow Servers #1

If we have an M/M/4 system with service rate μ=50 pps for each server, and another M/M/1 system with service rate 4μ = 200 pps. Both arrival rate is λ = 100 pps

delay for M/M/4 = 21.7 ms

delay for M/M/1 = 10 ms

Page 46: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

46

Comparisons (cont’d) Fast Server v.s A Set of Slow Servers #2

If we have n M/M/1 system with service rate μ pps for each server, and another M/M/1 system with service rate nμ pps. Both arrival rate is nλ pps

μλ

μλ

μλ

nλ nμ

1

1/

1T

S1 S2

2

1/ 1/

11

n nT

nn

12

TT

n

Page 47: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

47

M/M/m/m

Multiple Servers, No Storage

(m-Server Loss Systems)

Page 48: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

48

M/M/m/m There are available m servers, each newly arriving

customers is given a server, if a customers arrives when all servers are occupied, that customer is lost

e.g. telephony system.

k

k k

if k m 0 if k m

Page 49: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

49

M/M/m/m (cont’d)

kP 0

1( / ) if k m

!kP

k

0 if k m

1

00

1( / )

!k

k

Pk

Page 50: 1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

50

M/M/m/m (cont’d) Let pm describes the fraction of time that all m serv

ers are busy. The name given to this probability expression is Erlang’s loss formula and is given by

This equation is also referred to as Erlang’s B formula and is commonly denoted by B(m,λ/μ)

http://www.erlang.com

0

( / ) / !

( / ) / !

m

m mk

k

mp

k