37
1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass Study on the Jointed Rock Mass for for the Excavation of Hyper-KAMIOK the Excavation of Hyper-KAMIOK ANDE Cavern at Kamioka Mine ANDE Cavern at Kamioka Mine N07 Hamamatsu, Japan 3-5 October 2005

1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

Embed Size (px)

Citation preview

Page 1: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

11

Naruki WakabayashiShimizu Corporation Tokyo Japan

Study on the Jointed Rock Mass forStudy on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cav the Excavation of Hyper-KAMIOKANDE Cav

ern at Kamioka Mineern at Kamioka Mine

NNN07 Hamamatsu, Japan 3-5 October 2005

Page 2: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

22

Topics ・ Previous Geological Survey and Stability Analysis for the Hyper-K cavern ・ Site Selection ・ Isotropic Elastic FEM Analysis for the Investigation of Cavern Shape, Size and Type

 ・ Ongoing Investigation and Analysis for Jointed Rock Mass ・ Investigation of Joint Orientation ・ Obtaining In-Situ Rock Joints and Investigation of Joint Mechanical Properties ・ Pull-out Test of Two Types of Cable Bolt ・ Two Type Analysis for Consideration Joint Effects

Page 3: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

33

Mozumi mine

Tochibora mine

Proposed Area

Kamioka Mine Location

Kamioka Mine

Hamamatsu

Tokyo

Super-K

Proposed Area in Mozumi Mine is about 10km South from the Super-Kamiokande.

Site Selection

Page 4: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

44

Hyper-K Hyper-K proposed Siteproposed Site

HornblendeHornblendeBiotite GneissBiotite Gneiss& Migmatite& Migmatite

Biotite GneissBiotite Gneiss

LimestoneLimestone

”” AN

KO

” Fa

ult

AN

KO

” Fa

ult

”” 240

240

゜゚- M

E” F

au

lt- M

E” F

au

lt

””NAMARI” FaultNAMARI” Fault

Skarn OreSkarn Orebody Zonbody Zonee

Core BoringCore Boring

ExistingExistingTunnelTunnelSurveyedSurveyed

Geological Map of Proposed Siteat Tochibora Mine   Plan View of + 550mEL

N

Proposed Site Formation is Hornblende Biotite Gneiss and Migmatite.

Page 5: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

55

18m

42m

60m

ƒÓ 60m (r=30m)

Cylindrical Dome Larger than Super-K Huge Tunnel

Comparison of the Hyper-K Cavern from Various View PointsMultipleDomes

Single TunnelTwo Parallel

Tunnels

× ○ ○

△ △ ○

○ × ○

× ○ △

◎ ○ ○

× △ ○ Height 60.0 54.0 54.0 Width Φ 60 48.0 48.0 Length - - - 500 250

3,368 2,076 2,076152,600 1,038,000 519,000

7 1 21,068,200 1,038,000 1,038,000 Total Volume of Caverns (m3)

Size of oneCavern (m)

Cost Performance of Detector Tank

Construction Period & Cost

Cavern Stability

Total Evaluation

Observation during Maintenance

Early Observation Startup

Cavern Type

Vertical Cross Section Area (m2) Volume of one Cavern (m3) Required No. of Caverns

Two Parallel TunnelsIsotropic Elastic FEM Analysis

Image Design of Two 250m Long Parallel Tunnels

Spacing

Spacing

Offset

Offset

””NAMARI” FaultNAMARI” Fault”” AN

KO

” Fau

ltA

NK

O” F

ault

”” 240°-ME

” Fau

lt240°-M

E” F

ault

Page 6: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

66

Summary of Previous StudySite Selection : Tochibora Mine, +480mEL~+550m EL is the most appropriate location with very competent rock condition.Cavern Design: Two 250m Long Parallel Tunnels with Section of 2,076m2 are capable of being safely excavated.Cavern Layout : Two Parallel Tunnels as above should be Located with 80m –100m Spacing and 50m-100m Offset to avoid the poor Zone of Surrounding Faults.

In Isotropic Elastic FEM Analysis of Previous Study, Young’s Modulus was empirically decreased as Jointed Rock Mass.It is Important and Necessary to Consider Numerically the Influence of Joint Orientation and Mechanical Properties.

Page 7: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

77

Analysis for Jointed Rock Mass

Anisotropic Young’s Modulus Considering Joint Orientation and Mechanical Properties

Composition of Elastic Blocks Surrounding Joints

Equivalent Continuum Analysis

Discontinuous Analysis

Damage TensorCrack Tensor

Key BlockDistinct Element

Method (DEM)

・ Characteristics of Joint Orientation・ Mechanical Properties of Joint and Rock Core・ Mechanical Properties of Support such as Cable Bolt

Page 8: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

88

Investigation of Jointed Rock Mass

B-ⅡB-Ⅰ

B-ⅡB-Ⅲ

B-Ⅳ

D-Ⅴ

C-Ⅳ

C-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

C-Ⅲ

B-Ⅲ

B-Ⅳ

C-Ⅳ

B-Ⅰ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅰ

B-ⅡB-Ⅰ

B-Ⅱ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

D-Ⅳ

B-Ⅱ

C-Ⅳ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

C-Ⅳ

B-ⅡB-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅳ

B-Ⅳ

-200

+200

- 200

+100

0

-200

- 100

Ap

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

70

70

70

75

80

Ao

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

85

75

80

85

80

80

70

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ap

Ap

Ap

Ap Ao Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

AoAo

AoAo

AoAo

Ao

AoAo

Ao

Ao

Ao

Ao

Ao

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

60

S70E

240°目断層

~~

~~

~~

300

220

230

240

250

260

270

280

290

310

320

330

340

350

360

370

380

390

400

210

200

190

140

150

160

170

180

110

120

130

100

90

80

70

60

50

40

30

20

10

0

調査終了点

調査開始点

大規模地下空洞立地可能性調査400m 1:300坑道調査( )縮尺

凡例

伊西岩角閃石片麻岩スカルンアプライト緑泥石化片麻岩片理面

割れ目

滴水あり

岩盤分類凡例

B B- B-( Ⅰ、 Ⅱ)

CH B- C-( Ⅲ、 Ⅱ)

CM B- C-( Ⅳ、 Ⅲ)

CL D- C- C-( Ⅲ、 Ⅳ、 Ⅴ)

D D- D-( Ⅳ、 Ⅴ)

AP

Ao

巻末資料3岩盤分類図

B-ⅡB-Ⅰ

B-ⅡB-Ⅲ

B-Ⅳ

D-Ⅴ

C-Ⅳ

C-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

C-Ⅲ

B-Ⅲ

B-Ⅳ

C-Ⅳ

B-Ⅰ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅰ

B-ⅡB-Ⅰ

B-Ⅱ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

D-Ⅳ

B-Ⅱ

C-Ⅳ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

C-Ⅳ

B-ⅡB-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅳ

B-Ⅳ

-200

+200

- 200

+100

0

-200

- 100

Ap

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

70

70

70

75

80

Ao

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

85

75

80

85

80

80

70

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ap

Ap

Ap

Ap Ao Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

AoAo

AoAo

AoAo

Ao

AoAo

Ao

Ao

Ao

Ao

Ao

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

60

S70E

240°目断層

~~

~~

~~

300

220

230

240

250

260

270

280

290

310

320

330

340

350

360

370

380

390

400

210

200

190

140

150

160

170

180

110

120

130

100

90

80

70

60

50

40

30

20

10

0

調査終了点

調査開始点

大規模地下空洞立地可能性調査400m 1:300坑道調査( )縮尺

凡例

伊西岩角閃石片麻岩スカルンアプライト緑泥石化片麻岩片理面

割れ目

滴水あり

岩盤分類凡例

B B- B-( Ⅰ、 Ⅱ)

CH B- C-( Ⅲ、 Ⅱ)

CM B- C-( Ⅳ、 Ⅲ)

CL D- C- C-( Ⅲ、 Ⅳ、 Ⅴ)

D D- D-( Ⅳ、 Ⅴ)

AP

Ao

巻末資料3岩盤分類図

Pull-out Test of Cable bolt (6 Places)

Obtaining Rock Joint (3 Places)

+550m EL

N

Rock Classification B Very Good CH Good CM Medium

Measurement of Joint Orientationin this Existing Tunnel

Rock Types Gneiss Migmatite

Page 9: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

99

Investigation of Joint Orientation・ Major Joint Set   : Strike E-W and Dip ±70 ~ 90°・ Another Joint Set : Strike NE-WS and Dip ± 40 ~ 50°

Projection of Poles

Pole Density Contours

0

Equal angle projection, lower hemisphere

n=130 (P)Num total: 130

0

Equal angle projection, lower hemisphere

n=131 (P)Num total: 131

0

Equal angle projection, lower hemisphere

n=130max. dens.=5.82 (at 344/ 15)min. dens.=0.00Contours at:0.00, 1.00, 2.00, 3.00,4.00, 5.00,(Multiples of random distribution)

0

Equal angle projection, lower hemisphere

n=131max. dens.=9.44 (at 180/ 5)min. dens.=0.00Contours at:0.00, 1.00, 2.00, 3.00,4.00, 5.00, 6.00, 7.00,8.00, 9.00,(Multiples of random distribution)

Gneiss MigmatiteN

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

S

W E

Strike

Dip

Pole

Joint

×

Page 10: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1010

Situation of Obtaining In-Site Rock Joints

Recovered Core with Joint

Diamond Drilling

Joint

Joint

Page 11: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1111

・ Joint Deformability Parameters such as Normal and Shear Stiffness, Dilatancy Angle ・ Joint Shear Strength such as Cohesion and Internal Friction Angle

Normal Stress

Shear Displacement

Joint Mechanical Properties

Direct Shear Test of Rock Joints

Shear Test Equipment(Normal and Shear load are 1MN)

Rock Joint Specimen with extensometers

Page 12: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1212

0.00 0.05 0.10 0.15 0.20 0.25 0.300

2

4

6

8

10

12shear-3-1-v

(mm)垂直変位

(N

/mm

垂直

応力

2 )σn=10N/mm2

Normal Stiffness=67N/mm2/mm

Normal Displacement (mm)

No

rmal

Str

ess

(N/m

m2 )

- 0.2

- 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0

(mm)せん断変位

(mm

)垂

直変

3- 1(σ n=10MPa)2- 1(σ n=5MPa)1- 1(σ n=5MPa)2- 2(σ n=2MPa)

Di l atancy angle=2.4°

Shear Displacement (mm)

No

rmal

Dis

pla

cem

ent

(mm

)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

(N/ mm2)鉛直応力

(N/m

m2)

せん

断強

τ =0.5+σ n tan33°

τ =σ n tan54°

Normal Stress (N/mm2)

Sh

ear

Str

eng

th (

N/m

m2 )

Cohesion=0.57N/mm2

Internal Friction angle =33°

Results of Direct Shear Test

0

2

4

6

8

10

12

14

16

0.0 1.0 2.0 3.0 4.0 5.0

(mm)せん断変位

(N/m

m2)

せん

断応

3- 1(σ n=10MPa)2- 1(σ n=5MPa)1- 1(σ n=5MPa)2- 2(σ n=2MPa)

=60N/ mmせん断剛性 2/ mm

Shear Displacement (mm)

Sh

ear

Str

ess

(N/m

m2 ) Shear Stiffness=60N/mm2/mm

Shear Strength

Page 13: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1313

Pull-Out Test of Two Type Cable Bolts

Economical Support System should be used ・ Usual Support System for Large Cavern is Rock Anchor → Expensive ・ Proposed Support System is Rock Bolt and Cable Bolt → Economical ・ Special Cable Bolt with Dimples has very high Strength ・ Mechanical Properties of Cable bolt was estimated by Pull-Out Test

Usual Cable Bolt without Dimples( PC-Cable Bolt )

Special Cable Bolt with Dimples( ST-Cable Bolt )

Page 14: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1414

Situation of Pull-Out Tests

PC-Cable bolt

ST-Cable Bolt

Jock and Dial Gauge Pressure Pump

Diamond Drilling Inserting Cable Bolts

Pull-Out TestSetting up Equipments

Page 15: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1515

Results of Pull-Out TestsB片麻岩 級

0

50

100

150

200

250

0 2 4 6 8 10 12 14(mm)変位

(kN)

荷重

No.1- LNo.2- LNo.2- 上No.1- RNo.2- RNo.2- 下

ST

PC

Displacement (mm)

Load

(kN

)

Gneiss (B)

B伊西岩 級

0

50

100

150

200

0 2 4 6 8 10 12 14

(mm)変位

(kN

)荷

No.3- LNo.6- LNo.3- RNo.6- R

ST

PC

Displacement (mm)

Load

(kN

)

Migmatite (B)

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

0 50 100 150 200 250 300 350 400(kN/ m)付着強度

(kN/m

/m)

付着

剛性

B ST片麻岩 級( ) CM ST片麻岩 級( )B ST)伊西岩 級( CH ST)伊西岩 級(B PC片麻岩 級( ) CM PC片麻岩 級( )B PC)伊西岩 級( CH PC)伊西岩 級(

PC 53kN/ m:付着強度 以上 40100kN/ m/ m.付着剛性 以上

ST 270kN/ m:付着強度 以上 53900kN/ m/ m.付着剛性 以上

Strength (kN/m)

Stif

fnes

s (k

N/m

/m)

ST

PC

□Gneiss (B) ◇Migmatite(B) □Gneiss (B) ◇Migmatite(B)

△Gneiss (CH) ○Migmatite(CH)△Gneiss (CH) ○Migmatite(CH)

PC Strength above 53kN/m Stiffness above 40MN/m/m

ST Strength above 270kN/m Stiffness above 53MN/m/m

付着剛性付着強度

Stiffness (kN/m/m)Strength (kN/m)

Cable bolt model

Page 16: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1616

Mechanical Properties of Intact Rock Core Migmatite Gneiss

Compressive Strength (N/mm2) 191 176

Young’s Modulus (kN/mm2) 60.4 64.3

Poisson’s Ratio 0.24 0.26

Density (MN/m3) 0.027 0.027

Mechanical Properties Properties

Rock MassSame as Intact Rock

Young’s Modulus=64.3 kN/mm2 Poisson’s Ratio=0.25Density=0.26NM/m3

JointNormal Stiffness=67N/mm2/mm Shear Stiffness=60N/mm2/mm Dairatancy Angle=2.4°Cohesion=0.57N/mm2 Internal Frictional angle=33°

ST-Cable Bolt Shear Strength= 270kN/m Shear Stiffness=53MN/m/m

PC-Cable Bolt Shear Strength= 53kN/m Shear Stiffness=40MN/m/m

Page 17: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1717

Analysis Cases

SupportSupport In-Situ StressIn-Situ Stress

Case 1Case 1 Without SupportWithout SupportIsotropic Stress

σH=σv=14.4

( N/mm2 )(Overburden:500m)

Case 2Case 2Rock Bolt (Length=6m :Space=2m)Rock Bolt (Length=6m :Space=2m)

Double PC-Cable Bolt (Length=15m :Space=2m)Double PC-Cable Bolt (Length=15m :Space=2m)

Case 3Case 3Rock Bolt (Length=6m :Space=2m)Rock Bolt (Length=6m :Space=2m)

Double ST-Cable Bolt (Length=15m :Space=2m)Double ST-Cable Bolt (Length=15m :Space=2m)

Discontinuous Analysis by DEM

DEM Analysis is Performed to Establish the Behavior of Jointed Rock Mass and the Effect of Support System.

Cavern Direction is East and West

Huge TunnnelW48m×H54m

2070m2

”” AN

KO

AN

KO

””F

au

ltF

au

lt

”” 240

240 ゜゚--

ME

ME

””F

au

ltF

au

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fa

ult

Fa

ult

”” 240

240 ゜゚--

ME

ME

””F

au

ltF

au

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fa

ult

Fa

ult

”” 240

240 ゜゚--

ME

ME

””F

au

ltF

au

lt

””NAMARINAMARI”” FaultFaultNNN

Cavern Type and Direction

Page 18: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1818

Procedure of Analysis

Establishing Support System after Each Excavation Step

First Step SecondStep

Third Step

FourthStep

Analysis Model

200m

200m

Strike NS-WS Dip ± 40 ~ 50°

Strike E-W Dip ±70 ~ 90°

Joints are Generated Statistically According to the Joint Orientation

Page 19: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

1919

Displacement Vector and Cable Axial Force

Case 3: RB+ST-Cable Bolt (Double)

Displacement of Right and Left Side Wall are nearly same because of Symmetrical Joint Dip Angle (±70 ~ 90°).

Displacement of Case-3 is smaller than Case-2 because of Support Effect

Case 1 : Without Support Case 2 : RB+PC-Cable Bolt (Double)

89 17

15

93

17

45

67 13

15

41

10

35

60 13

15

37

10

32

284

464415

( kN )

474

618620

( kN )×

Failure

(mm)

(mm)

(mm)

Page 20: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2020ModelX

Z

  Equivalent Continuum Analysis by Crack Tensor

Cavern Type and Region (528m×528m)

240m 240m48m

240

m23

4m54

mHuge TunnnelW48m×H54m

2070m2

Crack Tensor Analysis is Performed to Estimate the Relation between Tunnel Direction and Joint Orientation.

In-Situ Stress is Isotropic σH=σv=14.4 ( N/mm2 )Case 1:Cavern Direction is East and West, parallel Joint StrikeCase 2:Cavern Direction is North and South, right-angled Joint Strike

”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN ”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Case 1 Case 2

Join

t S

trik

e

Join

t S

trik

e

Page 21: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2121

Displacement

Case 1 Case 2Output Set: I- DEAS Case 1Deformed(0.0391): Total Translation

9mm

15mm

39mm39mm

Output Set: I- DEAS Case 1Deformed(0.0391): Total Translation

9mm

15mm

39mm39mm

Output Set: I- DEAS Case 1Deformed(0.0181): Total Translation

12mm

18mm8mm

18mm

Output Set: I- DEAS Case 1Deformed(0.0181): Total Translation

12mm

18mm8mm

18mm

”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Join

t S

trik

e ”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Join

t S

trik

e

Side Wall Displacement of Case 1 is 2 times Larger than Case 2 because of influence of Joint Strike Direction.

Page 22: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2222

Summary

Joint Orientation : At Proposed Site in Tochibora Mine, Major Joint Set Strike Direction is E-W and Dip Angle is ±70 ~ 90°Joint Properties : Normal and Shear Stiffness, Shear Strength are Estimated. Cable Bolt Properties : Shear Strength and Stiffness of ST and PC Cable Bolt are Estimated. Shear Strength of ST-Cable Bolt is 5 Times Higher than PC-Cable Bolt. ST-Cable Bolt is very Effective Support.Results of Analysis : Discontinuous and Equivalent Continuum Analysis are able to Estimate the Effect of Rock Support System and the Anisotropic Behavior of Jointed Rock Mass. Joint Orientation is very Important factor to decide the Cavern Axis.Further Investigation : It is Necessary for Accurate Joint Orientation to investigate in Different Direction Tunnel or Bore Hole. Measurements of In-Situ Initial Stresses and In-Situ Tests on Rock Mass Deformability are indispensable.

Page 23: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2323

END

Page 24: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2424

Page 25: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2525

ST cable bolt

0

50

100

150

200

250

0 2 4 6 8 10 12 14

displacement (mm)

load

(kN

)

in- situ test

simulation

cable bolt

0

20

40

60

80

100

0 2 4 6 8 10 12 14

dispplacement (mm)

load

(kN

)

in- situ test

simulation

ボルトの引き抜き試験の解析補強要素(ボルト)

グラウト孔掘削

ボルトの軸剛性

付着節点

すべり(ボルト/グラウトの粘着力= sbond)

ボルト/グラウトのせん断剛性= kbond

m

m

m

Page 26: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2626

空洞の安定解析  南北の鉛直面に亀裂傾斜を投影し、統計的に亀裂を発生させてモデルを作成

200m

200m

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

伊西岩

例数

範囲

個 数 :125 平均値 :87.0° 標準偏差:10.6°

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

片麻岩

例数

範囲

個 数 :123 平均値 :91.8° 標準偏差:24.8°

傾斜角 (deg)

傾斜角 (deg)

Page 27: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2727

クラックテンソルによる解析手法の概要

・岩盤基質部の弾性係数、ポアソン 比  (E, ν )・不連続面の垂直剛性とせん断剛性  に関する パラメータ  (h, g)・不連続面の幾何学特性を表す  2階、4階の クラックテンソル  (Fi j , Fi j kl)a:垂直方向の スプリング

b:せん断方向の スプリング多数の不連続面

を含む岩盤

垂直剛性 , せん断剛性(h, g)

クラックテンソル(Fi j , Fi j kl)

r

n (+)

n(-)

ba

τ σn

クラックテンソルによる不連続性岩盤の巨視的な応力とひずみ関係

kljkjljkililjkjlikijklklijjlikij FFFFg4

1F

g

1

h

11

E

1

Page 28: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2828

不連続性岩盤を対象とした解析手法不連続性岩盤を対象とした解析手法解析手法 亀裂のモデル化

弾性解析 ×亀裂の存在を岩盤の物性低下で考慮

弾塑性解析FEM連続体解析

非線形粘弾性解析

等方

等価

NAPI S ○無数にある亀裂の効果を等価な連続体で表現。

「亀裂の開口」と「亀裂の卓越方向に沿った変形」を剛性低下で表現可能。

適用岩盤の概念

亀裂がない、または、ランダムな方向性の無数の亀裂を有する岩盤

方向性を持った無数の亀裂を有する岩盤

比較的少数の特定の長い亀裂を有する岩盤や有限個の亀裂に囲まれた岩盤ブロック

MBC

EQR

複合降伏モデルクラックテンソル損傷テンソルジョイント要素 ○

個々の亀裂を解析メッシュ上でモデル化。

「亀裂の開口」と「亀裂の卓越方向に沿った変形」を表現可能(キーブロック解析を除く)。

RBSM

DEM

キーブロック解析DDA

マニホールド法

不連続体解析

Page 29: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

2929

1.原位置岩盤のクラックテンソルの決定クラックテンソルの算定

2000

02908000

33

1311

..Sym

..

N.Sym

NN

0840

00601160

024008407160

3131

33313333

113111331111

.

..

...

N.Sym

NN

NNN

0290

00500480

007000400890

0020003000500550

00400080027004804930

002000700230029008901200

3131

23312323

123112231212

3331332333123333

22312223221222332222

113111231112113311221111

..Sym

..

...

....

.....

......

N.Sym

NN

NNN

NNNN

NNNNN

NNNNNN

1320

01206300

008005502380

33

2322

131211

..Sym

..

...

N.Sym

NN

NNN

■三次元の Nij , Nijkl

■二次元断面上の Nij , Nijkl

■F0の算定

■二次元断面上の Fij , Fijkl

2000

02908000

33

1311

..Sym

..

F.Sym

FF

0840

00601160

024008407160

3131

33313333

113111331111

.

..

...

F.Sym

FF

FFF

ijklijklijij NFFNFF 00 ,

(1)

(2)

(3)

(4)

2. 6m

2.6m

10m

調査坑道を横切る不連続面

・調査坑道 10mあたり 4本の不連続面を想定・不連続面の寸法(等価円の直径 r) 不連続面の面積: S=2.6m×2.6m=6.76m2

・ F0の算定

m..Sr 9276622

131

4921062624

4

3

1

30

.

...

rV

FM

k

)k(

∴F0=1.0

(5)

(6)

(7)(8)

(9)

(10)

Page 30: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3030

クラックテンソルによる解析手法の概要

・岩盤基質部の弾性係数、ポアソン 比  (E, ν )・不連続面の垂直剛性とせん断剛性  に関する パラメータ  (h, g)・不連続面の幾何学特性を表す  2階、4階の クラックテンソル  (Fi j , Fi j kl)a:垂直方向の スプリング

b:せん断方向の スプリング多数の不連続面

を含む岩盤

垂直剛性 , せん断剛性(h, g)

クラックテンソル(Fi j , Fi j kl)

r

n (+)

n(-)

ba

τ σn

クラックテンソルによる不連続性岩盤の巨視的な応力とひずみ関係

kljkjljkililjkjlikijklklijjlikij FFFFg4

1F

g

1

h

11

E

1

Page 31: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3131

解析結果

ケース1 ケース3

Output Set: I- DEAS Case 1Deformed(0.0391): Total Translation

Output Set: I- DEAS Case 1Deformed(0.0522): Total Translation

Output Set: I- DEAS Case 1Deformed(0.0181): Total Translation

変形図( 200倍)

等方弾性解析

N

W

S

E

調査

坑道

方向

X

空洞

Y

Z軸

は鉛

直方

向N

W

S

E

調査

坑道

方向 X

空洞

YZ

軸は

鉛直

方向

47mm52mm

36mm 9mm

15mm

39mm

12mm

18mm8mm

18mm39mm52mm

空洞軸を東西方向とするケース2では、二次元断面上の不連続面が鉛直方向(Z方向)に卓越するためそれに垂直な方向となるX方向に変形が大きく生じる変形モードとなる。一方、空洞軸を南北方向とするケース3では、空洞軸方向に対して直交する不連続面が卓越するため、XZ方向の変形は小さく、空洞軸方向の変形が大きく生じる変形モードとなる。

Page 32: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3232

解析結果

ケース1 ケース2 ケース3最大主応力分布( N/mm2)

等方弾性解析

N

W

S

E

調査坑道方向

X

空洞軸

Y

Z軸は鉛直方向

N

W

S

E

調査坑道方向

X

空洞軸

YZ軸は鉛直方向

0.

- 5.

- 10.

- 15.

- 20.

- 25.

- 30.

- 35.

- 40.

Output Set: I- DEAS Case 1Contour: Solid Y Normal Stress

0.

- 5.

- 10.

- 15.

- 20.

- 25.

- 30.

- 35.

- 40.

Output Set: I- DEAS Case 1Contour: Solid Y Normal Stress

0.

- 5.

- 10.

- 15.

- 20.

- 25.

- 30.

- 35.

- 40.

Output Set: I- DEAS Case 1Contour: Solid Y Normal Stress

⑤⑥

⑤⑥

⑤⑥

   ケース1ケース1 ケース2ケース2 ケース3ケース3天端①天端① -36.18 -36.18 -35.21 -35.21 -35.88 -35.88

右側壁②右側壁② -24.39 -24.39 -23.77 -23.77 -24.23 -24.23

右偶角③右偶角③ -36.14 -36.14 -35.71 -35.71 -36.21 -36.21

左側壁④左側壁④ -24.39 -24.39 -23.69 -23.69 -24.26 -24.26

左偶角⑤左偶角⑤ -36.14 -36.14 -35.73 -35.73 -36.18 -36.18

底盤⑥底盤⑥ -18.65 -18.65 -20.55 -20.55 -19.34 -19.34

Page 33: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3333

解析結果

ケース1 ケース2 ケース3

最小主応力分布( N/mm2)

等方弾性解析

N

W

S

E

調査坑道方向

X

空洞軸

Y

Z軸は鉛直方向

N

W

S

E

調査坑道方向

X

空洞軸

YZ軸は鉛直方向

0.

- 2.5

- 5.

- 7.5

- 10.

- 12.5

- 15.

- 17.5

- 20.

Output Set: I- DEAS Case 1Contour: Solid X Normal Stress

0.

- 2.5

- 5.

- 7.5

- 10.

- 12.5

- 15.

- 17.5

- 20.

Output Set: I- DEAS Case 1Contour: Solid X Normal Stress

0.

- 2.5

- 5.

- 7.5

- 10.

- 12.5

- 15.

- 17.5

- 20.

Output Set: I- DEAS Case 1Contour: Solid X Normal Stress

⑤⑥

⑤⑥

⑤⑥

   ケース1ケース1 ケース2ケース2 ケース3ケース3

天端①天端① -1.49 -1.49 -1.45 -1.45 -1.46 -1.46

右側壁②右側壁② -0.48 -0.48 -0.47 -0.47 -0.47 -0.47

右偶角③右偶角③ -4.80 -4.80 -5.10 -5.10 -5.06 -5.06

左側壁④左側壁④ -0.48 -0.48 -0.46 -0.46 -0.48 -0.48

左偶角⑤左偶角⑤ -4.80 -4.80 -4.95 -4.95 -5.14 -5.14

底盤⑥底盤⑥ -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

Page 34: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3434

解析結果

ケース1 ケース2 ケース3

安全率分布

等方弾性解析

N

W

S

E

調査坑道方向

X

空洞軸

Y

Z軸は鉛直方向

N

W

S

E

調査坑道方向

X

空洞軸

YZ軸は鉛直方向

4.

3.5

3.

2.5

2.

1.5

1.3

1.

0.

Output Set: I- DEAS Case 1Contour: Solid Z Normal Stress

4.

3.5

3.

2.5

2.

1.5

1.3

1.

0.

Output Set: I- DEAS Case 1Contour: Solid Z Normal Stress

4.

3.5

3.

2.5

2.

1.5

1.3

1.

0.

Output Set: I- DEAS Case 1Contour: Solid Z Normal Stress

Page 35: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3535

0 5 10cm

1 0~2

J RC=20

50cm

500cm

J RC=10

50cm

500cm

J RC=5

50cm

500cm2

3

4

5

6

8

J RC値に対応する典型的な粗さ形状

2~4

4~6

6~8

8~10

10~12

14~16

9 16~18

10 18~20

7 12~1410cm

500cm50cm

30

20

10

0

JRC= (Df-1)/(4.413×10-5)

1. 00 1. 01 1. 02 1. 03

フラクタル次元

JRC

Lee et al.

ラフネスの定量的評価

亀裂面のラフネスを測定し、フラクタル次元

を算出↓

JRC を評価

フラクタル次元

y = - 0.0125x + 0.0162

y = - 0.0157x + 0.0238

y = - 0.0158x + 0.0286

00.0050.01

0.0150.02

0.0250.03

0.0350.04

0.0450.05

- 1.5 - 1 - 0.5 0 0.5 1 1.5

log(r)半径( )

(log(

N*r

+ε))

総延

2- 1- 12- 1- 22- 1- 3

(2- 1- 3)線形 (2- 1- 1)線形 (2- 1- 2)線形

Page 36: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3636

60

70

80

0 20 40 60 80 100 120 140

mm距離( )

LD m

m

60

70

80

0 20 40 60 80 100 120 140 160

LD m

m

60

70

80

0 20 40 60 80 100 120 140 160 180

LD m

m

ラフネスの測定例(1)

- 10

0

10

0 20 40 60 80 100 120 140 160 180

mm距離( )

LD m

m

-10

0

10

0 20 40 60 80 100 120 140 160 180

LD m

m

- 10

0

10

0 20 40 60 80 100 120 140 160 180

LD m

m

Df=1.0071→JRC=12

Df=1.0264→JRC=24

Df=1.0302→JRC=26

Df=1.0121→JRC=16

Df=1.0072→JRC=12

Df=1.0082→JRC=13

片麻岩

片麻岩

Page 37: 1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine NNN07

3737

80

90

100

0 20 40 60 80 100 120 140 160

mm距離( )

LD m

m

80

90

100

0 20 40 60 80 100 120 140 160

LD m

m

80

90

100

0 20 40 60 80 100 120 140 160

LD m

m

90

100

110

0 20 40 60 80 100 120 140

mm距離( )

LD m

m

80

90

100

0 20 40 60 80 100 120 140 160

LD m

m

80

90

100

0 20 40 60 80 100 120 140 160

LD m

m

ラフネスの測定例(2)

Df=1.0125→JRC=16

Df=1.0158→JRC=18

Df=1.0157→JRC=18

Df=1.0077→JRC=13

Df=1.0117→JRC=16

Df=1.0108→JRC=15

片麻岩

片麻岩