59
1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

Embed Size (px)

Citation preview

Page 1: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

1

ECE 221Electric Circuit Analysis I

Chapter 10Circuit Analysis 3 Ways

Herbert G. Mayer, PSUStatus 10/21/2015

Page 2: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

2

Syllabus

Goal Sample Problem 1 Solve by Substitution KCL Using Cramer’s Rule Solve by Node Voltage Method Solve by Mesh Current Method Conclusion Problem 1 Same for Problem 2

Page 3: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

3

Goal We’ll analyze simple circuits, named Sample

Problem 1 and Sample Problem 2

With various constant voltage sources and resistors

Goal is to compute branch currents i1, i2, and i3

First by using conventional algebraic substitution, applying Kirchhoff’s Laws; we’ll need 3 equations

Secondly, we use the Node Voltage Method

Thirdly we compute fictitious currents ia and ib, using the Mesh Current Method

Any method may apply Cramer’s Rule to conduct the arithmetic computations, once the equations exist

Page 4: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

4

Problem 1

Page 5: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

5

Circuit for Sample Problem 1

Page 6: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

6

Solve Solve Problem 1Problem 1

Via KCL, KVLVia KCL, KVL

Using Arithmetic SubstitutionUsing Arithmetic Substitution

Page 7: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

7

Sample Problem 1: 3 Equations

KCL at node n1:

(1) i1 = i2 + i3

KVL in the left mesh, labeled ia:

(2) R1*i1 + R3*i3 - v1 = 0

KVL in the right mesh, labeled ib:

(3) R2*i2 + v2 - R3*i3 = 0

(3)’ i3 = (R2*i2)/R3 + v2/v3

Page 8: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

8

Solve Problem 1 Arithmetic Substitution

(1) in (2)

R1*(i2+i3) + R3*i3 = v1

R1*i2 + R1*i3 + R3*i3 = v1

R1*i2 + i3*(R1+R3) = v1

R1*i2 + (R2*i2 + v2)*(R1+R3)/R3 = v1

. . .

i2*(R1+R2*(R1+R3)/R3) = v1-v2*(R1+R3)/R3

. . .

i2*(100+2*400/3) = 10 - 20*(400/300)

i2 = -45.45 mA

Page 9: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

9

Solve Problem 1 Arithmetic Substitution

i3 = i2 * R2/R3 + v2/R3 = -0.0303+0.066667

i3 = 0.03636 A

i3 = 36.36 mA

i1 = i2 + i3

i1 = -9.09 mA

Page 10: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

10

Solve Solve Problem 1Problem 1

Via KCL, KVLVia KCL, KVL

Using Cramer’s RuleUsing Cramer’s Rule

Page 11: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

11

Solve Problem 1 Using Cramer’s Rule

i1 = i2 + i3

R1*i1 + R3*i3 - v1 = 0

R2*i2 + v2 - R3*i3 = 0

Normalized:

i1 – i2 - i3 = 0

R1*i1 + 0 + R3*i3 = v1

0 + R2*i2 - R3*i3 = -v2

Page 12: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

12

Cramer’s Characteristic Determinant

Normalize i1, i2, i3 positions in matrix

| 1 -1 -1 | | 0 |Δ = | R1 0 R3 |, R = | v1 |

| 0 R2 -R3 | |-v2 |

| 1 -1 -1 |Δ = |100 0 300 |

| 0 200 -300 |

| 1 -1 1 |S = | -1 1 -1 |

| 1 -1 1 |

Page 13: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

13

Cramer’s Characteristic Determinant

Δ = 1 | 0 300 | -100 | -1 -1 | + 0| 200 -300 | | 200 -300|

Δ = 1*( 0 – 60,000 ) - 100*( 300 + 200 )

Δ = -60k - 50k

Δ = -110,000

Page 14: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

14

Numerator Determinant N1, and i1| 0 -1 -1 |

N(i1) = N1 = | 10 0 300 ||-20 200 -300|

N1 = -10 | -1 -1 | -20|-1 -1|| 200 -300| | 0 300|

N1 = -10 * (300+200) -20 * (-300 )

N1 = -10*500 + 6,000

N1 = 1,000

i1= 1,000 / -110,000

i1 = -0.00909 A = -9.09 mA

Page 15: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

15

Numerator Determinant N2, and i2

| 1 0 -1 |N(i2) = N2 = | 100 10 300 |

| 0 -20 -300 |

N2 = 1 | 10 300 | -100 | 0 -1 ||-20 -300 | | -20 -300|

N2 = -3,000 + 6,000 -100 * ( 0 - 20 )

N2 = 3,000 + 2,000 = 5,000

i2 = 5,000 / -110,000

i2 = -0.04545 A = -45.45 mA

Page 16: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

16

Numerator Determinant N3, and i3

| 1 -1 0 |N(i3) = N3 = | 100 0 10 |

| 0 200 -20 |

N3 = 1 | 0 10 | -100 | -1 0 || 200 -20 | | 200 -20 |

N3 = -2,000 - 100 * (20 ) = -4,000

i3= -4,000 / -110,000

i3 = 0.0363636 A = 36.36 mA

Page 17: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

17

Solve Solve Problem 1Problem 1

Using NoVoMoUsing NoVoMo

Page 18: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

18

Solve Problem 1 by Node Voltage Method

Ignoring the current or voltage directions from the substitution method, we use the Node Voltage Method at node n1, currents flowing toward reference node n2

We generate 1 equation with unknown V300, voltage at the 300 Ω resistor, yielding i3

Once known, we can compute the voltages at R1 and R2, and thus compute the currents i1 and i2, using Ohm’s law

Page 19: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

19

Solve Problem 1 by Node Voltage Method

Page 20: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

20

Solve Problem 1 by Node Voltage Method

3 currents flowing from n1 toward reference node n2:

V300/300 + (V300-10)/100 + (V300-20)/200 = 0

V300 + 3*V300 + V300*2/3 = 30 + 3*20/2

V300*( 1 + 3 + 2/3 ) = 60

Students Compute V300

Page 21: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

21

Solve Problem 1 by Node Voltage Method

3 currents flowing from n1 toward reference node n2:

V300/300 + (V300-10)/100 + (V300-20)/200 = 0

V300 + 3*V300 + V300 * 3/2 = 30 + 3*20/2

V300*( 1 + 3 + 3/2 ) = 60

V300 = 60 * 2 / 11

V300 = 10.9090 V

Students Compute i3

Page 22: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

22

Solve Problem 1 by Node Voltage Method

3 currents flowing from n1 toward reference node n2:

V300/300 + (V300-10)/100 + (V300-20)/200 = 0

V300 + 3*V300 + V300 * 3/2 = 30 + 3*20/2

V300*( 1 + 3 + 3/2 ) = 60

V300 = 60 * 2 / 11

V300 = 10.9090 V

i3 = V300 / 300

i3 = 36.363 mA

Page 23: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

23

Solve Problem 1 by Node Voltage Method

V(R1) = v1 - V300

V(R1) = 10 - 10.9090 = -0.9090 V

i1 = V(R1) / R1

i1 = -0.9090 / 100

i1 = -9.09 mA

Students Compute i2

Page 24: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

24

Solve Problem 1 by Node Voltage Method

V(R1) = v1 - V300

V(R1) = 10 - 10.9090 = -0.9090 V

i1 = V(R1) / R1

i1 = -0.9090 / 100

i1 = -9.09 mA

From this follows i2 using KCL:

i2 = i1 - i3

i2 = -9.0909 – 36.3636

i2 = -45.45 mA

Page 25: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

25

Solve Solve Problem 1Problem 1

Using MeCuMoUsing MeCuMo

Page 26: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

26

Solve Problem 1 by Mesh Current Method The mesh current is fictitious, one such current

associated with its own individual mesh

Fictitious in the sense as if it were uniquely tied to a mesh; yet depending on the branch of the mesh, mesh currents from other parts flow though that very mesh as well

Kirchhoff’s current law is trivially satisfied, but mesh currents are not everywhere measurable with an Ampere meter: not measurable, when currents from other meshes super-impose

In Sample Problem 1 we have 2 meshes, with mesh currents indicated as ia and ib

But we must track that, R3 for example, has both flowing though it in opposing directions

Page 27: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

27

Solve Problem 1 by Mesh Current Method

Page 28: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

28

Solve Problem 1 by Mesh Current Method

KVL for mesh with ia yields:

(1) R1*ia + R3*(ia-ib) = v1

KVL for mesh with ib yields:

(2) R3*(ib-ia) + R2*ib = -v2

Students Compute (1) for ib

Then substitute ib in (2)

Page 29: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

29

Solve Problem 1 by Mesh Current Method

KVL for mesh with ia yields:

(1) R1*ia + R3*(ia–ib) = v1

KVL for mesh with ib yields:

(2) R3*(ib-ia) + R2*ib = -v2

From (1) follows:

(1) ib = ( R1*ia + R3*ia - v1 ) / R3

Substitute ib in (2):

(2) -v2 = ib*(R2+R3) - R3*ia

-v2 = ia*(R1+R3)*(R2+R3)/R3 -

v1*(R2+R3)/R3 - R3*ia

Page 30: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

30

Solve Problem 1 by Mesh Current Method

v1*(R2+R3)/R3 - v2 =

ia*( (R1+R3)*(R2+R3)/R3 – R3)

-20 + 10*5/3 = ia*(400*500/300 – 300)

ia = -10 / 1100

ia = -0.00909 A = -9.09 mA

Since ia = i1:

i1 = -9.09 mA

Page 31: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

31

Solve Problem 1 by Mesh Current Method

Recall (1):

(1) R1*ia + R3*(ia–ib) = v1

R3*ib = ia*(R1+R3) - v1

ib = ia*(R1+R3)/R3 - v1/R3

ib = -10*400/(1,100*300) - 10/300

ib = -0.04545 A = -45.45 mA

since i2 = ib:

i2 = -45.45 mA

Page 32: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

32

Conclusion Problem 1 via Mesh Current

Since i3 = i1 - i2, i3 = -9.09 mA - -45.45 mA

it follows:

i3 = 36.36 mA

We see consistency across 3 different approaches to circuit analysis

Page 33: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

33

Problem 2Problem 2

Page 34: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

34

Sample Problem 2 We’ll analyze another, similar circuit, named Sample

Problem 2

With 2 constant voltage sources of 3 V and 4 V

Plus 3 resistors at 100, 200, and 300 Ohm

Again we compute 3 branch currents i1, i2, and i3

Using 3 methods:

First we use substitution, applying Kirchhoff’s Laws

Then we use the Node Voltage Method

Thirdly the Mesh Current Method

Any of these methods may use Cramer’s Rule

Page 35: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

35

Circuit for Sample Problem 2

Page 36: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

36

Sample Problem 2: Three Equations

KCL states:

(1) i1 = i2 + i3

KVL in the upper mesh labeled ia yields:

(2) i1*100 + i2*200 -3 = 0

KVL in the lower mesh, labeled ib yields:

(3) -i2*200 + i3*300 + 4 + 3 = 0

Page 37: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

37

Solve Problem 2 by Substitution

-200*i2 + (i1-i2)*300 = -7 // (1)in(3)

-500*i2 + 300*i1 = -7 // (3’)

100*i1 + 200*i2 = 3 // (2)*3

300*i1 + 600*i2 = 9 // (2’)

(3’)-(2’)

-500*i2 - 600*i2 = -7 -9 = -16

i2*1,100 = 16

i2 = 16 / 1,100

i2 = 14.54 mA

Page 38: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

38

Solve Problem 2 by Substitution

i1*100 + i2*200 = 3

i1*100 = 3-200*(16/1,100)

i1*100 = 100/1,100

i1 = 1 / 1,100

i1 = 0.91 mA

i3 = i1 - i2

i3 = -15 / 1,100

i3 = -13.63 mA

Page 39: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

39

Solve Solve Problem 2Problem 2

Via KCL, KVLVia KCL, KVL

Using Cramer’s RuleUsing Cramer’s Rule

Page 40: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

40

Solve Problem 2 Using Cramer’s Rule

i1 = i2 + i3

i1*100 + i2*200 -3 = 0

-i2*200 + i3*300 +4 +3 = 0

Normalized:

i1 - i2 - i3 = 0

100*i1 + 200*i2 + 0 = 3

0 - 200*i2 + 300*i3 = -7

Page 41: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

41

Cramer’s Characteristic Determinant

Normalize i1, i2, i3 positions

| -1 1 1 | | 0 |D = | 100 200 0 |, R = | 3 |

| 0 -200 300 | | -7|

| 1 -1 1 |S = | -1 1 -1 |

| 1 -1 1 |

Page 42: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

42

Cramer’s Characteristic Determinant

Δ = -1 | 200 0 | -100 | 1 1 | + 0| 200 -300| |-200 300 |

Δ = -60,000 – 50,000 = -110,000

Δ = -110 k

Page 43: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

43

Numerator Determinant N1, and i1

| 0 1 1 |N(i1) = N1 = | 3 200 0 |

| -7 -200 300 |

N1 = 0 - 3| 1 1 | -7 | 1 1 ||-200 300 | |200 0 |

Students Compute N1,

Given Δ = -110 k

Page 44: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

44

Numerator Determinant N1, and i1| 0 1 1 |

N(i1) = N1 = | 3 200 0 || -7 -200 300 |

N1 = 0 - 3| 1 1 | -7 | 1 1 ||-200 300 | |200 0 |

N1 = -3*(300+200) -7*(-200) =

N1 = -1,500 + 1,400

N1 = -10

Now Students Compute i1

Page 45: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

45

Numerator Determinant N1, and i1| 0 1 1 |

N(i1) = N1 = | 3 200 0 || -7 -200 300 |

N1 = 0 - 3| 1 1 | -7 | 1 1 ||-200 300 | |200 0 |

N1= -3*(300+200) -7*(-200) =

N1= -1,500 + 1,400

N1= -100

i1 = -100 / -110,000

i1 = 0.000909 A

i1 = 0.91 mA

Page 46: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

46

Numerator Determinant N2, and i2

| -1 0 1 |N(i2) = N2 = |100 3 0 |

| 0 -7 300 |

N2 = -1 | 3 0 | -100 | 0 1 | + 0| -7 300 | | -7 300|

N2 = -(900) - 100* (7) = -1,600

i2 = -1,600 / -110,000

i2 = 14.54 mA

With i3 = i1 - i2 it follows:

i3 = -13.63 mA

Page 47: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

47

Solve Solve Problem 2Problem 2

Using NoVoMoUsing NoVoMo

Page 48: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

48

Solve Problem 2 by Node Voltage Method

Page 49: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

49

Solve Problem 2 by Node Voltage Method

There are 2 essential nodes, n1 and n2

One will be selected as reference node: pick n2

Compute 3 currents from n1 to n2, express as function of v200

Students compose single KCL equation

For node n1, using single unknown v200

Page 50: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

50

Solve Problem 2 by Node Voltage Method

Use KCL to compute 3 current from n1 toward reference node n2:

V200/200 + (V200-3)/100 + (V200-3-4)/300 = 0

Students compute v200, and i2

Page 51: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

51

Solve Problem 2 by Node Voltage Method

Use KCL to compute 3 current from n1 toward reference node n2:

V200/200 + (V200-3)/100 + (V200-3-4)/300 = 0

V200*(3/2 + 3 + 1 ) = 9 + 7

V200*11/2 = 16

V200 = 2.9090 V

i2 = V200 / 200

i2 = 14.54 mA

Page 52: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

52

Solve Problem 2 by Node Voltage Method

KVL in the lower mesh, with V300 being the voltage drop across the 300 resistor, yields:

V300 = -7 + V200 = -7 + 2.9090 = -4.091 V

i.e. i3 = V300/300 = -0.013637 mA

i3 = -13.63 mA

i1 = i2 + i3 = 14.54 - 13.63

i1 = 0.91 mA

Page 53: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

53

Solve Solve Problem 2Problem 2

Using MeCuMoUsing MeCuMo

Page 54: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

54

Solve Problem 2 by Mesh Current Method

Again we analyze 2 meshes, with fictitious currents ia and ib

Circuit is repeated below for convenience

Page 55: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

55

Mesh Current In Sample Problem 2

Page 56: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

56

Solve Problem 2 by Mesh Current Method

KVL for mesh with ia yields:

(1) 100*ia + 200*( ia-ib ) = 3

(1) 300*ia - 200*ib = 3

(1) ib = (300*ia-3)/200

KVL for mesh with ib yields:

(2) 300*ib+200*( ib – ia ) = -7

(2) 500*ib-200*ia = -7

Page 57: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

57

Solve Problem 2 by Mesh Current Method

Substitute ib from (1) in (2):

500*(300*ia - 3)/200 - 200*ia = -7

ia = 1/1,100 = 0.91 mA

i1 = ia, hence:

i1 = 0.91 mA

ib = 3*ia/2-3/200 = 3/(1,100 * 2) - 3/200

ib = -13.63 mA

i3 = ib, hence

i3 = -13.63 mA

Page 58: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

58

Solve Problem 2 by Mesh Current Method

With i2 = i1 - i3, it follows:

i2 = 14.54 mA

Page 59: 1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 3 Ways Herbert G. Mayer, PSU Status 10/21/2015

59

Which Method is easiest?

• It seems the Node Voltage Method is simplest for these problems

• With the smallest number of equations

• Mesh Current method has smaller number of equations than pure KCL and KVL

• Small number of equations yields less chances for sign confusion

• But for a large number of unknowns Cramer’s Rule is THE methodical way to compute