24
1 ECE 221 Electric Circuit Analysis I Chapter 6 Cramer’s Rule Herbert G. Mayer, PSU Status 1/14/2015

1 ECE 221 Electric Circuit Analysis I Chapter 6 Cramer’s Rule Herbert G. Mayer, PSU Status 1/14/2015

Embed Size (px)

Citation preview

1

ECE 221Electric Circuit Analysis I

Chapter 6Cramer’s Rule

Herbert G. Mayer, PSUStatus 1/14/2015

2

Syllabus

Motivation Steps for Cramer’s Rule Cramer’s Rule: ∆ Cramer’s Rule: Numerator Ni

Cramer’s Rule: Solve for xi

Sample Problem

3

Motivation Circuit analysis involves solution of multiple (n)

linear equations

One way to solve is via algebraic substitution

Which becomes tedious and highly error-prone, once n is interestingly large

Engineering calculators often provide built-in solutions, a method internally using Cramer’s Rule

Yet future engineers must understand the method first; then they should use a calculator

First learn to use determinants to solve n unknowns xi in a set of n linear equations, with i = 1..n

Requirement: n independent equations for n independent unknowns xi

4

Cramer’s Rule Solving Unknowns xi

∆ is the Characteristic Determinant, used in every equation, computing the denominator of xi

N i are the numerators for xi

Then for each xi its equation is: xi = N i / ∆

x1 = N1 / ∆

x2 = N2 / ∆

x3 = N3 / ∆

5

Steps for Cramer’s Rule To start, normalize: Order all equations by

index i of the unknowns xi to be computed Requires a square matrix! If any unknown xi in equation j is not present,

insert it with constant factor ci,j = 0 Compute the characteristic determinant ∆ for

the denominator And then, for each unknown xi compute its

associated numerator determinant Ni

Finally solve for all xi

xi = N i / ∆

6

Steps for Cramer’s Rule

Counting of rows and columns starts at 1; not at 0! Not like the first index of C or C++ arrays!

Unknowns xi are to be computed Constants in each row i that multiply each

unknown xj in column j are shown as ci,j

The right hand side of = forms a separate column vector of result values Ri

7

Equations for Cramer’s Rule, With n=3

x1 * c1,1 + x2 * c1,2 + x3 * c1,3 = R1

x1 * c2,1 + x2 * c2,2 + x3 * c2,3 = R2

x1 * c3,1 + x2 * c3,2 + x3 * c3,3 = R3

The 3 unknowns xi to be computed are x1 x2 x3

8

Cramer’s Rule: ∆ Write the characteristic determinant ∆ by

listing only and all coefficients ci,j in the n rows and n columns

Then write the single column for the vertical Results vector R

|c1,1 c1,2 c1,3|| R1|

∆ = |c2,1 c2,2 c2,3| [R]= | R2||c3,1 c3,2 c3,3|

| R3|

 

9

Cramer’s Rule: ∆ Pick an arbitrary column, e.g. column 1, then remove

one of its elements ci,1 i=1..n at a time, starting with row 1

Generate the next minor matrix, by eliminating the whole rowi and columnj, initially j = 1; etc. for all rows 1..n

Multiply the remaining minor matrix by that constant ci,1 and by its sign; sign = (-1)row+col here = (-1)i+1

∆ = c1,1 |c2,2 c2,3| - c2,1 |c1,2 c1,3| + c3,1 |c1,2

c1,3|

|c3,2 c3,3| |c3,2 c3,3| |c2,2

c2,3|

∆ = c1,1 * ( c2,2 * c3,3 - c3,2 * c2,3 )

- c2,1 * ( c1,2 * c3,3 - c3,2 * c1,3 )

+ c3,1 * ( c1,2 * c2,3 - c2,2 * c1,3 )

 

 

10

Cramer’s Rule: Numerator Ni = N1

Starting with the Characteristic Determinant ∆

Replace ith column for computing xi, and replace that column by result vector [R]; so for x1 we generate:

|R1 c1,2 c1,3|N1 = |R2 c2,2 c2,3|

|R3 c3,2 c3,3| 

N1 = R1 |c2,2 c2,3| - R2 |c1,2 c1,3| + R3|c1,2 c1,3|

|c3,2 c3,3| |c3,2 c3,3||c2,2 c2,3|

N1 = R1* ( c2,2 * c3,3 - c3,2* c2,3 )

- R2* ( c1,2 * c3,3 - c3,2* c1,3 )

+ R3* ( c1,2 * c2,3 – c2,2* c1,3 )

 

 

11

Cramer’s Rule: Numerator N2

|c1,1 R1 c1,3|N2 = |c2,1 R2 c2,3|

|c3,1 R3 c3,3|

N2 = c1,1 |R2 c2,3| - c2,1 |R1 c1,3| + c3,1 |R1 c1,3| |R3 c3,3| |R3

c3,3| |R2 c2,3|

N2 = c1,1 * ( R2 * c3,3 - R3* c2,3 )

- c2,1 * ( R1 * c3,3 - R3* c1,3 )

+ c3,1 * ( R1 * c2,3 - R2* c1,3 )

12

Cramer’s Rule: Numerator N3

|c1,1 c1,2 R1|N3 = |c2,1 c2,2 R2|

|c3,1 c3,2 R3|

N3 = c1,1 | c2,2 R2 | - c2,1 |c1,2 R1 | + c3,1 |c1,2

R1 | | c3,2 R3 | |c3,2 R3|

|c2,2 R2 |

N3 = c1,1* ( R3 * c2,2 - R2* c3,2 )

- c2,1* ( R3 * c1,2 - R1* c3,2 )

+ c3,1* ( R2 * c1,2 - R1* c2,2 )

13

Cramer’s Rule: Solve for xi

For each xi its equation is: xi = N i / ∆

x1 = N1 / ∆

x2 = N2 / ∆

x3 = N3 / ∆

14

Sample Problem, [1] Appendix A

-9 * v2 - 12 * v3 + 21 * v1 = -33

-2 * v3 + 6 * v2 - 3 * v1 = 3

-8 * v1 + 22 * v3 - 4 * v2 = 50

Below are 3 sample equations for some fictitious circuit

The 3 unknowns vi to be computed are v1 v2 v3

15

Sample Problem, [1] Appendix A

21 * v1 - 9 * v2 - 12 * v3 = -33

-3 * v1 + 6 * v2 - 2 * v3 = 3

-8 * v1 - 4 * v2 + 22 * v3 = 50

All 3 equations normalized, i.e. sorted by index, for unknowns v1 v2 v3

16

Characteristic Determinant ∆

Now write result column and the characteristic determinant ∆ by listing the coefficients ci,j only

|21 -9 -12|| -33 |

∆ = |-3 6 -2| [R]= | 3 |

|-8 -4 22|| 50 |

∆ = 21 | 6 -2 | - (-3) |-9 -12 | -8 |-9-12|

|-4 22 | |-4 22 | | 6 -2|

∆ = 21*(132-8) + 3*(-198-48) - 8*(18+72)

∆ = 2,604 – 738 - 720 = 1,146

17

Numerator N1

Replace column 1 with column vector [R]

|-33 -9 -12|N1 = | 3 6 -2|

| 50 -4 22| 

N1 = -33 |6 -2 | - 3 |-9 -12| + 50 |-9 -12|

|-4 22 | |-4 22|| 6 -2|

N1 = -33*(124) - 3*(-246) + 50*(18+72)

N1 = 1,146

 

 

18

Numerator N2

Replace column 2 with column vector [R]

|21 -33 -12 |N2 = |-3 3 -2 |

|-8 50 22 | 

N2 = 21 | 3 -2 | + 3 |-33 -12| - 8 |-33 -

12| |50 22 | | 50

22| | 3 -2|

Students compute N2 in class! 

 

19

Numerator N2

Replace column 2 with column vector [R]

|21 -33 -12 |N2 = |-3 3 -2 |

|-8 50 22 | 

N2 = 21 | 3 -2 | + 3 |-33 -12| - 8 |-33 -

12| |50 22 | | 50

22| | 3 -2|

N2 = 21*(166) + 3*(-126) - 8*(102)

N2 = 3,486 – 378 – 816 = 2,292

 

 

20

Numerator N3

Replace column 3 with column vector [R]

|21 -9 -33 |N3 = |-3 6 3 |

|-8 -4 50 | 

N3 = 21 | 6 3 | + 3 |-9 -33 | - 8 |-9 -

33 | |-4 50 | |-4 50

| | 6 3 |

 

Students compute N3 in class!

 

21

Numerator N3

Replace column 3 with column vector [R]

|21 -9 -33 |N3 = |-3 6 3 |

|-8 -4 50 | 

N3 = 21 | 6 3 | + 3 |-9 -33 | - 8 |-9 -

33 | |-4 50 | |-4 50

| | 6 3 |

N3 = 21*(312) + 3*(-582) - 8*(171)

N3 = 6,552 – 1,746 – 1,368 = 3,438

 

 

22

Cramer’s Rule: Solve for v1, v2, and v3

For all vi the results are: vi = N i / ∆

v1 = N1 / ∆ = 1,146 / 1,146 = 1 V

v2 = N2 / ∆ = 2,292 / 1,146 = 2 V

v3 = N3 / ∆ = 3,438 / 1,146 = 3 V

23

What if?

What would the result be, if we had expanded the characteristic determinant ∆ along the 3rd column? Let’s see:

|21 -9 -12|∆ = |-3 6 -2|

|-8 -4 22|

∆ = -12 |-3 6 | - (-2) |21 -9 | + 22 |21 -9|

|-8 -4 | |-8 -4 | |-3 6|

∆ = -12*(12+48) + 2*(-84-72) + 22*(126-27)

∆ = -720 – 312 + 2,178 = 1,146 <- same result!!

24

What if? One of the wonders of Cramer’s Rule: we

may expand the characteristic determinant ∆ in whichever way we like, along any column, along any row!

Result is consistently the same That is mathematical beauty!