1-Design Concepts and Specification - Betancourt

Embed Size (px)

Citation preview

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    1/70

    Powering reliable solutions for you Proprietary information

    Design Concepts and Specification

    Enrique Betancourt R.

    Powering reliable solutions for you

    Transformers Technology and DiagnosticsSeminar

    Prolec GE - WEIDMANN

    May 2013 Monterrey, NL

    Copyright Prolec GE Internacional

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    2/70

    2

    Contents1. Fundamentals

    2. Construction

    3. Basic Requirements

    4. Types of Transformers

    5. Components and Performance Parameters

    6. Key Design Stages

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    3/70

    3

    1. Fundamentals

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    4/70

    4

    Definition and Principle of Operation

    ELECTRICAL TRANSFORMER:

    DEVICE WITH NO CONTINUOUSLY-MOVING PARTS, THAT BY

    MEANS OF ELECTROMAGNETIC INDUCTION, TRANSFERS

    ELECTRICAL ENERGY BETWEEN TWO CIRCUITS AT,

    GENERALLY, DIFFERENT VOLTAGE BETWEEN TERMINALS.

    a

    c

    N1V E

    2

    i1

    v1 v2

    i2

    N1 N2

    Magnetic

    Field

    (Flux) Electric

    Current

    (NxI)

    WindingNo. 1

    WindingNo. 2

    Ferromagnetic

    Core

    Flux

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    5/70

    5

    1-phase pad-mount

    1-phase pole-mount

    3-phase primarysubstation

    xfmr

    3-phase pad-mount (CPAD) network

    secondary substationtransformer (SST)- liquid- vent dry

    - cast coil

    3-phasegeneratorstep-up

    Network Autotransformer

    500 kV20 kV

    115 kV

    13.2 kV

    600-127 V

    220-127 V

    220-127 V

    The Role of Transformers in the Grid

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    6/70

    6

    2. Construction

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    7/707

    Basic Construction of a Power Transformer (Core type, >7.5MVA)

    - Silicon steel laminations

    - Stepped to fit round

    section

    - Vertical Legs, horizontal

    Yokes

    - Size impacts tank height

    and length

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    8/708

    - Clamp and isolate the core

    - Core grounded at a single point

    - Cooling ducts to avoid hot spots

    Core Insulation

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    9/709

    Winding Packages

    - Each phase-package has

    primary and secondary

    windings

    - Cylindrical shape provides

    high mechanical strength

    - Inner LV Wdg. outer HV Wdg.

    - Oil enters cool at bottom and

    leaves hot at top

    - High strength rings axially

    clamp the windings

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    10/7010

    - Tie together the core laminations

    - Provide support for coil

    clamping and lead structures

    - Large size units require

    insulated clamps

    - Must withstand handling,

    shipping and short circuit forces

    Frames and Tank Attachments

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    11/7011

    - Provide safe dielectric

    clearances for winding leads

    - Must withstand shipping and

    short circuit forces

    - Provide support for NLTC andother components

    Lead Structures

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    12/7012

    Leads

    - Rated for maximum operation

    and test currents

    - Insulation according to test

    voltage and clearances

    - Hot spot below winding hot spot

    - Brazed or crimped joints

    - For high currents, magnetic

    clearances important

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    13/7013

    Bushings

    - Allow pass of HV leads

    through grounded tank cover

    or walls

    - Most from procelain, some

    polymeric

    - LV solid, HV condenser type

    - Connector area according to

    maximum current

    - Normally mounted in turrets

    with current transformers

    - Most oil-air type

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    14/7014

    Tank Bottom

    Copyright Prolec GE InternacionalE.Betancourt R.

    - Robust for lifting and

    transportation

    - Flat or with stiffeners

    - Attachment points for

    seismic forces

    - Inner attachments for

    core and coils

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    15/7015

    Tank (w/o cover)

    - Structural, low carbon steel

    (mainly)

    - Keeps core and coils oil

    immersed, clean and free from

    moisture

    - Welds and gaskets must be

    leak proof

    - It withstands vacuum

    processing, handling,

    shipping, operating pressure

    and seismic forces

    - Reacts with magnetic leakage

    flux to produce stray losses

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    16/7016

    Transformer Assembly

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    17/7017

    Transformer Assembly

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    18/7018

    Transformer Assembly

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    19/7019

    Tank Cover

    - Welded to the walls

    - Non-magnetic steel inserts

    - Holds main and auxiliary

    bushings, CTs and pressure

    relays

    - For conservator type, conveys

    bubbles quickly to gas relay

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    20/7020

    Tank Radiators

    - Attached with valves and

    flanges to the walls

    - Heat exchangers made of

    soft steel panels

    - Fans improve heat transferrate

    - Single or common headers

    convey oil out of (top) and

    back in (bottom) the tank

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    21/7021

    Conservator Tank

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    22/7022

    Bushings and Arresters

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    23/70

    23

    3. Basic Requirements

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    24/70

    24

    Normal Spec

    Type (conventional 2W, 3W, Auto, GSU)

    Load Rating (base and extended), MVA

    Rated Voltages (HV, LV, TV), kV

    Winding Connection (Y, Delta, Z)

    Temperature Rise (65oC, 55oC)

    Impedance (voltagedrop)

    Ambient Temperature (30oC Avg., 40oC mx)

    Core overexcitation 110% no load, 105% at full load

    Tolerances according to ANSI-IEEE

    Technical Requirements

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    25/70

    25

    Core overexcitation

    Overloads with/without loss of life

    Impedances for more than two windings

    Impedance swing within taps range

    Extreme ambient temperatures (55oC-50oC)Short circuit with overvoltage

    Corrosive operating ambient

    Frequent short circuits, switching or lightning

    Reduced tolerances (impedance, losses, ratio)

    Special Requriements

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    26/70

    26

    Total owningcost (initial cost + losses)

    Cost of transportation and erection on site

    Performance as specified

    Service reliability

    On time delivery on site

    Cycle time for delivery of drawings

    Criticals to Quality (CTQs)

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    27/70

    27

    Balanced cost of losses (no-load and Load) vs. materials cost

    Cooling (Normal and Emergency Load)

    Exact estimation of hot spot temperatures

    Limit thermal degradation of cellulose and oil

    Limit thermal surface load (mW/mm2)

    Avoid excessive gas generation

    Overvoltage Endurance (Impulse, Switching)

    Limit electrical stress in oil

    Exact calculation of voltage distribution

    Mechanical Withstand (Short Circuit, Vacuum, Shipping)

    Exact calculation of forces and stresses

    Estimation of impact strength of materials

    Design Challenges

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    28/70

    28

    4. Types of Transformers

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    29/70

    29

    Number of PhasesThree PhaseSingle Phase

    Type of CoreCore typeShell type

    Main Cooling MediumOil (air/water)

    Air (air/water)

    Synthetic Fluid

    Application in the Power SystemSubstation step downGenerator step-up

    Autotransformador (inter tie)RegulatorDistributionIndustrials

    Number of Main WindingsTwo windingMultiwinding (usually three)

    Transformation RatioOff circuit Taps (10% Range)On Load Tap Changer (20% Range)No taps

    b/2

    bb/2 1

    2

    3

    3

    2

    1

    bb/2

    b/2

    Transformer Classifications

    Copyright Prolec GE InternacionalE.Betancourt R.

    ( Source: Dietrich, Transformatoren )

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    30/70

    30

    X1 XoX3X2

    H1 H3H2

    Wye Connection Delta Connection

    Three-Phase Winding Connections

    Higher voltages

    Neutral can be grounded

    Higher currents

    Capacitively referred toground

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    31/70

    31

    Autotransformer Connection

    Throughput power:

    VH * IH = VX * IX

    Converted power:

    VX * IC

    Converted / Throughput:

    = 1 VX / VH

    = NS / (NS + NC)

    Lower cost than equivalent transformer

    Same grounding H and L sides (galvanic coupling)

    Y-Y Connection

    Low impedance, high short circuit forces

    Lower benefits as VX

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    32/70

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    33/70

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    34/70

    34

    Three Phase Transformer Single Phase Transformer

    in a 3-Phase Bank

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    35/70

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    36/70

    36

    Fundamental Design Equation

    Zi

    i

    N

    Zi

    i

    R

    N ddt

    AC voltage excitation of a ferromagnetic core

    V(t) = Vmax* sin(t) = Z*i(t) + N d(t)/dt y N (d(t)/dt)If Z*i(t)

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    37/70

    37

    The ferromagnetic core builds a magnetic circuit

    The flux is the same in every section of a single loop

    N1

    N2

    N3

    1

    1

    2

    3

    2

    3

    Three winding transformer

    Open circuit voltages:

    11

    44.4 NfV

    22

    44.4 NfV

    33

    44.4 NfV

    3

    3

    2

    21

    N

    V

    N

    V

    N

    V

    Turns Ratio

    1

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    38/70

    38

    Exciting Current of Power Transformers

    Exciting Current

    e Induced Voltage Magnetic Fluxi Exciting Currentim Magnetization Currentic Exciting Loss Current

    e

    i

    im

    ic

    e e

    Non sinusoidal waveshape

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    39/70

    39

    Harmonics in Exciting Current

    Phase shift between harmonics ina three phase system

    Main harmonics in Exciting Current

    I1m Fundamental frequency component(50/60 Hz).

    Im3 3rd

    harmonic componentIm5 5th harmonic component

    3rd harmonic is dominant, and cancels in 3 phase systems.

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    40/70

    40

    Core Type (3P)

    Shop assembly of a shelltype core (1P)*

    * Courtesy: Tramosa, Monterrey Repair Shop

    Core and Shell Types

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    41/70

    41

    20 12 30 32

    20 12 30 32

    FM

    SPLIT

    FM

    COM

    POUND

    FM

    SOLID

    SM

    SOLID

    0

    Core lamination

    cuts:

    Cycle?

    Stock?

    Losses?

    Noise?

    Scrap?

    Hot spots?

    Width?

    Types of Cores

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    42/70

    42

    Flux concentration in the

    gaps at jointsStep lapped joints

    A B C

    Lower Yoke

    Upper Yoke

    ( Source: Dietrich, Transformatoren )

    Core Joints

    5 0,5 mm

    a) Low flux density

    b) Higher flux density

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    43/70

    43

    Core Loss

    Magnetic flux concentration,

    driving hot spot at the Tjoint

    Magnetic flux distribution in a three

    limb core

    0.6 0.8 1 1.2 1.4 1.6 1.8 2T0

    0.4

    0.2

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    1.5 1.7

    P

    4

    2

    6

    8

    10

    12

    14

    0

    16

    18

    S 1.5= 1..17 VA/kg

    P 1.5= 0..87 W / kg

    P

    S

    S

    VA / Kg

    ( Source: Dietrich, Transformatoren )

    Excitation losses (NLL, Core loss)

    B

    W / Kg

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    44/70

    44

    Components of Core LossHysteresis Loss:

    H

    B

    B5

    Br

    Hc

    Core Eddy-Current Loss:

    The laminated core exhibits strongly reduced eddy current losses, because each path ha s lowinduced volta g e and high electrical resistance .

    W = H dB [ w/m 3 ]

    W/cycle =f

    H dB

    ~ Area within hysteresis loop

    Area = f (Bmax)Hysteresis Loss :

    PH = Volume * f *c * Bmax

    e

    e = 1.5 . . . 2.0 Experimentalc, e material con stant s

    Concentricloops

    0 sin wt 0 sin wt

    In each loop :

    eind ~

    d

    dt

    icirc. ~ ength

    eind

    l

    Peddy~ ength

    eind

    l

    2

    Solid Core Lam ina ted Core

    Cancellation of

    circulating

    currents in alaminated core.

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    45/70

    45

    50

    60

    70

    80

    90

    110

    100

    %

    Material

    Losses

    Thickness

    Standard

    Hi-B

    Laser

    Future

    Trend in core loss for cold laminated steels.

    0.35 0.23 500.270.3 0.2mm 0.6 0.8 1.21.0 1.4 1.6 1.8 2.0T

    0.03

    0.01

    0.02

    0.05

    0.1

    0.2

    0.3

    0.5

    2.0

    1.0

    Material

    Losses

    W/kg

    Flux Density

    1

    2

    Comparison Hi-B vs. Amorphous Metal1.- Hi-B silicon steel

    2.- Amorphous metal

    ( Source: Dietrich, Transformatoren )

    Core material losses

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    46/70

    46

    Comparison HiB vs.

    Conventional oriented

    grain steel

    Other key variables for the Core:

    Mechanical strength and stability

    Grounding

    Clamping pressure

    Volts per turn

    Gaps at the joints

    0.60.8 1 1.2 1.4

    1.61.8

    2

    Tesla

    0

    0.4

    0.2

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    1.5 1.7

    W/kg

    ( Source: Dietrich, Transformatoren )

    Excitation VA

    Hi B

    Conventional

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    47/70

    47

    Types of Conductors

    1) Rectangular conductor with paper insulation.

    2) Twin conductor.

    3) Continuously Transposed Conductor (CTC).

    1)

    3)

    2)

    1) 2) 3)

    4) 5)

    Layer and Disk Windings

    1) Layer Wdg. (double layer).

    2) Continuous Disk Wdg.

    3) Sequential Disk Wdg.

    4) Pair of continuous disk sections.

    5) Pair of interleaved disk sections.

    ( Source: Dietrich, Transformatoren )

    Conductors and Windings

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    48/70

    48

    Helical (single, doble, triple)Layers

    Tapping Winding

    Barrel with taps

    Multistart

    Disks

    Continuous

    Intershield

    Interleaved

    Layers

    Conventional

    Special arrangements

    Types of Windings

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    49/70

    49

    ( Source: Transformatoren, Dietrich )

    Insulation Assemblies

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    50/70

    50

    ( Source: EHV Weidmann )

    Field Plots for Insulation Design

    HV Wdg.

    A

    HV Wdg.

    B

    LV Wdg.

    A

    Core

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    51/70

    51

    ( Source: EHV Weidmann )

    Finite Element Mesh

    Core

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    52/70

    52

    ( Source: EHV Weidmann )

    Equipotential Lines

    Core

    LV Wdg.

    A

    HV Wdg.

    A

    HV Wdg.

    B

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    53/70

    53

    DESIGN CONSIDERATIONS

    Materials

    Dielectric and magnetic clearances

    Short circuit and transportation forces

    Assembly process (factory and field)

    Temporary assembly elements

    Operating temperature and heat run

    overloads

    Magnetic balance

    Current share in parallel circuits

    Lead structures

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    54/70

    54

    DESIGN CONSIDERATIONS

    Structural steel

    Low temperature operation

    Seismic withstand

    Shipping lugs

    Welds for accessories

    Location of accessories

    Non magnetic inserts

    Shipping detachablecomponents

    Gas collecting pipework

    Gaskets

    Main Tank

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    55/70

    55

    Main materials

    Insulating FluidPaper and pressboard

    Synthetic paper andpressboard

    Wood (natural and synthetic)

    High strength plastics

    Glue and adhesives

    Enamels

    Requirements

    Dielectric withstandMechanical strength

    Temperature index

    Process resistance (VP,vacuum, oil)

    Long-term chemical stability

    Insulating materials

    Courtesy of Weidmann Electrical Technology

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    56/70

    56

    6. Key Design Stages

    Cooling

    Mechanical forcesDielectric stress

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    57/70

    57

    Natural circulation of oil through the windings:

    Natural air cooling

    ONAN

    Forced Air Circulation

    ONAF

    Transformer Cooling Circuit

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    58/70

    58

    Forced oil circulation ODAF, OFAF

    ODAF Forced flow through the windings

    OFAF Forced flow into the tank, only

    Pump

    Fans

    Radiators

    Transformer cooling circuit

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    59/70

    59

    Cooling of WindingsTemp

    Wdg.

    Depth

    Gradient

    Cu-OilOilFlow

    DOF Washerdeflectores

    BarrierBarrier

    Spacer

    Radial duct

    Axial Duct

    Conductors

    OilConductor

    Axial Cut View Section (top)

    View

    Tamb HSTTOT

    Cooling of windings

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    60/70

    60Magnetic Field and Resultant Forces

    ( Fuente: Dietrich, Transformatoren )

    Short circuit withstand

    Fa FaLV HV

    LV HV

    N

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    61/70

    61

    Outer Winding Inner Winding

    Center

    Line

    Top view of phase

    package

    Lateral section view of

    phase package

    Force vs. time

    X

    CoreX

    FR

    ISC

    FA

    SC forces in core type transformers

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    62/70

    62

    Spacers

    Conductors

    Conductors

    Axial Forces

    Spacers

    Axial effect of SC forces

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    63/70

    63

    Short circuit endurance is fundamental for reliable operation

    SC currents in power systems grow with interconnection

    Standardized tests guarantee SC endurance under controlled conditions,

    but, for how many more years? How many short circuit events?

    Most insulating materials undergo degradation after long service

    DGA and conventional testing do not guarantee timely detection of

    mechanical weakness, to avoid catastrophic failures good, proven

    design and manufacturing practice is a MUST

    New techniques, as on line mechanical vibration monitoring, and off-line

    SFRA promise better ability to detect incipient degradation

    Short circuit strength and reliability

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    64/70

    64

    Hydraulic

    Jacks clampthe windings

    Isostatic winding sizing

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    65/70

    65

    Types of Disk Windings

    Continuous Disk

    Winding

    c1 c1

    c1

    c1

    c1

    c1

    c2

    c2

    c2

    c2

    c1

    c1

    c1

    c1

    Interleaved

    Windings

    C1 is high

    Impulse withstand

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    66/70

    66

    Impulso deTensin

    Cg

    Cg

    Cg

    Cs

    Cs

    Cs

    V1

    V2

    V3

    V

    t

    V1 > V2 > V3 . . . .

    Lightning

    Impulse

    Non linear voltage distribution

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    67/70

    67

    H

    h

    CORE WINDING

    t

    V

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,00

    0,2

    0,4

    0,6

    0,8

    1,0

    db

    ca

    h/H

    InitialVoltage Distribution in Disk Windings

    a.- Continuous disk winding.

    b.- Interleaved disk winding.

    c. - Partially interleaved winding.

    d.- Final voltage distribution.

    ( Source: Dietrich, Transformatoren )

    P.U. ImpulseVoltage

    Relative winding length

    Lightning impulse overvoltage

    1.0 P.U.Impulse

    Voltage

    Copyright Prolec GE InternacionalE.Betancourt R.

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    68/70

    68

    Reactance between windings

    Copyright Prolec GE InternacionalE.Betancourt R.

    ( Source: Karsei, Kereny, Kiss, Large Power Transformers )

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    69/70

    69

    Winding arrangements

    Copyright Prolec GE InternacionalE.Betancourt R.

    ( Source: Karsai, Kereny, Kiss,

    Large Power Transformers )

  • 7/28/2019 1-Design Concepts and Specification - Betancourt

    70/70

    Equivalent Circuit

    ( Source: Karsai, Kereny, Kiss,

    Large Power Transformers )