1 Da Volt Var Control Optimization

  • Upload
    elisa10

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

  • Volt VARControl&Optimization

    BobUluskiQuantaTechnology

    2010 Quanta Technology LLC

  • WhatisVoltVARcontrol? VoltVARcontrol(VVC)isafundamentaloperatingrequirementofall

    electricdistributionsystems

    TheprimepurposeofVVCistomaintainacceptablevoltageatallpointsalongthedistributionfeederunderallloadingconditions

    LTC

    Primary Feeder

    SUBSTATION

    Primary Feeder

    Secondary

    Distribution Transformer

    Service Drop WiresFirst

    Customer

    Last Customer

    Customer

    Voltage

    3 volts Primary

    2 volts distribution transformer

    1 volt secondary

    1 volt service drop

    122

    119117116

    First Customer

    2010 Quanta Technology LLC

    Distance

    115 Last CustomerANSI C84.1 Lower Limit (114 volts)114

  • WhatisVoltVARcontrol? WithoutVVC:

    Voltagemightbeokayduringaverageload

    Transformer T P i i

    120V

    126VTap Position

    114V

    D

    S E F

    F C L C

    2010 Quanta Technology LLC

    S

  • WhatisVoltVARcontrol? WithoutVVC:

    voltagemightdroopbelowtheminimumacceptablelevelforsomecustomersduringheavyloadperiods

    Transformer T P i i

    120V

    126VTap Position

    114VLow Voltage

    D

    S E F

    F C L C

    2010 Quanta Technology LLC

    S

  • WhatisVoltVARcontrol? WithoutVVC:

    Couldraisethemanualtapsettingonthesubstationtransformertocorrect the peak load problemcorrectthepeakloadproblem

    Transformer Tap Position

    120V

    126V

    114V

    D

    S E F

    F C L C

    2010 Quanta Technology LLC

    S

  • WhatisVoltVARcontrol? WithoutVVC:

    Butwhenfeederloadinginlight,highvoltagecouldbeaproblem at the substation end of the feederproblematthesubstationendofthefeeder

    Transformer Tap Position High Voltage

    120V

    126V

    114V

    D

    S E F

    F C L C

    2010 Quanta Technology LLC

    S

  • WhatisVoltVARcontrol? WithoutVVC:

    Butwhenfeederloadinginlight,highvoltagecouldbe a problem at the substation end of the feeder

    N VVAR

    C S

    beaproblematthesubstationendofthefeeder

    Transformer Tap Position

    120V

    126V

    114V

    D

    S E F

    F C L C

    2010 Quanta Technology LLC

    S

  • VVC=VoltageRegulation+ReactivePowerCompensation

    Use voltage regulators (Vregs) or transformers with load tap changers Usevoltageregulators(Vregs)ortransformerswithloadtapchangers(LTCs) thatautomatically raiseorlowerthevoltageinresponsetochangesinload

    Use capacitor banks to supply some of the reactive power that would Usecapacitorbanks tosupplysomeofthereactivepowerthatwouldotherwisebedrawnfromthesupplysubstations

    2010 Quanta Technology LLC

    D

    SS

    E F

  • VVCinTodaysOperatingEnvironment(andTomorrowsOperatingEnvironmentToo!)

    Maintainingthestatusquo nolongeracceptable UtilitiesareseekingtodomorewithVVCthanjustkeeping

    voltagewithintheallowablelimits

    S t ti i ti i i t t t f th l Systemoptimization isanimportantpartofthenormaloperatingstrategyundersmartgrid

    AspenetrationofintermittentrenewablegeneratingAs penetration of intermittent renewable generatingresourcesgrowsinfuture,highspeeddynamicvoltVARcontrolwillplayasignificantroleinmaintainingpowerquality and voltage stability on the distribution feedersqualityandvoltagestabilityonthedistributionfeeders

    2010 Quanta Technology LLC

  • VoltVARControlinaSmartGridWorld

    ExpandedobjectivesforVoltVARcontrolinclude Basic requirement maintain acceptable voltageBasicrequirement maintainacceptablevoltage SupportmajorSmartGridobjectives:

    Accomplishenergyconservationff ( d h l l ) Improveefficiency(reducetechnicallosses)

    Promoteaselfhealinggrid(VVCplaysaroleinmaintainingvoltageafterselfhealinghasoccurred)

    Enable idespread deplo ment of Distrib ted generation Rene ables EnablewidespreaddeploymentofDistributedgeneration,Renewables,Energystorage,andotherdistributedenergyresources

    2010 Quanta Technology LLC

  • RequirementsfortheIdealVoltVARSystem

    MaintainAcceptableVoltageProfile atallpointsalongthedistributionfeederunderallloadingconditions

    MaintainAcceptablePowerFactor underallloadingconditions ProvideSelfMonitoring alertdispatcherwhenavoltVARdevice

    f ilfails

    AllowOperatorOverride duringsystememergencies Work correctly following Feeder ReconfigurationWorkcorrectlyfollowingFeederReconfiguration AccommodateDistributedEnergyResources ProvideOptimalCoordinatedControl ofallVoltVARdevices AllowSelectableOperatingObjectives asdifferentneedsarise

    2010 Quanta Technology LLC

  • Approaches to Volt VAR ControlApproachestoVoltVARControl

    Traditional ApproachTraditionalApproach

    DLA Master Station

    Switched Capacitor Bank

    SCADA Volt VARDistribution

    SCADA

    Distribution Power Flow

    p

    SCADAVoltVAR

    Integrated Volt VAR

    IVVCApplication

    Substation RTU

    Line Regulator

    IntegratedVoltVARSubstationCapacitor Bank

    Substation TransformerWith Load

    Tap Changer

    2010 Quanta Technology LLC

  • TraditionalVoltVARControl

    Current/VoltageSensor

    CapacitorBank

    Distribution Primary LineCurrent/Voltage

    Sensor

    Voltage R l tBank

    "Local" Current/Voltage

    Measurements On/Off Control Command

    Regulator

    "Local" Current/Voltage

    Measurements On/Off Control Command

    Standalone Controller

    CommandSignal Standalone

    Controller

    CommandSignal

    VoltVARflowsmanagedbyindividual,independent,standalonevoltVARregulatingdevices:

    Substation transformer load tap changers (LTCs) Substationtransformerloadtapchangers(LTCs) Linevoltageregulators Fixedandswitchedcapacitorbanks

    2010 Quanta Technology LLC

  • Limitations of Traditional ApproachLimitationsofTraditionalApproach

    Power factor correction/loss reductionPowerfactorcorrection/lossreduction Manytraditionalcapbankcontrollershavevoltagecontrol (switch on when voltage is low)control(switchonwhenvoltageislow)

    Reactivepowercontrollersavailable,butexpensive(needtoaddCT) Goodatmaintainingacceptablevoltage Good at PF correction during peak load seasons may not come on at all GoodatPFcorrectionduringpeakloadseasonsmaynotcomeonatallduringoffpeakseasons

    ResultisthatPFisusuallygreat(nearunity)duringpeakloadperiodsandlowduringoffpeakseasons(higherelectricallosses)g p ( g )

    2010 Quanta Technology LLC

  • MonitoringofSwitchedCapacitorBankfPerformance

    Switched capacitor banks are notorious forSwitchedcapacitorbanksarenotoriousforbeingoutofserviceduetoblownfuses,etc.

    With traditional scheme switched capacitor Withtraditionalscheme,switchedcapacitorbankcouldbeoutofserviceforextendedperiods without operator knowingperiodswithoutoperatorknowing LosseshigherifcapbankisoutofserviceR i i i d d? Routineinspectionsneeded?

    2010 Quanta Technology LLC

  • TraditionalVoltageRegulationStrategy

    LineDropCompensationaccountsforvaryingload

    Wh l d th h ltLTC

    Whenloadthroughvoltageregulatorishigh,voltagedropalongthefeederwillbehigh

    LTC i lt t

    SUBSTATION

    Primary Feeder

    Secondary

    Distribution Transformer

    Service Drop WiresFirst

    LTCraisesvoltagetocompensate

    Thisapproachworkswellwhenll f d l d th h th

    Last Customer

    Customer

    Voltage

    allfeederloadpassesthroughthevoltageregulator

    3 volts Primary

    2 volts distribution transformer

    1 volt secondary

    1 volt service drop

    122

    119117116115

    First Customer

    Last Customer

    Distance

    Last CustomerANSI C84.1 Lower Limit (114 volts)114

    2010 Quanta Technology LLC

  • VoltageRegulationProblemWhenLargeDGUnitisIntroduced

    WithalargeDRoutonthe feeder load throughthefeeder,loadthroughVregwillbereduced

    Vreqthinksloadislightonthefeeder

    Vreglowerstapsettingtoavoidlightload,highvoltagecondition

    This action makes theThisactionmakestheactualheavyload,lowvoltageconditionevenworse

    DMS that accounts for DMSthataccountsforDGaffectscanmaketheproperraise/lowerdecisionbasedontotalfeeder conditions

    2010 Quanta Technology LLC

    feederconditions

  • VoltageRegulationDuringAlternateFeedConfiguration

    Olderstylevoltageregulatorswereoftendesignedtohandleapurelyradialsituation powerflowalwaysfromthesamedirection(fromthesubstation)

    OlderstyleVregsmaynotworkcorrectlyifpowerflowisfromtheoppositedirection(seeexample)

    Couldraisevoltagewhenduringlightload,creatinghighvoltagesituation Couldlowervoltagewhenduringheavyload,creatinglowvoltagesituation

    Feederreconfigurationmaybecomeamorefrequentoccurrencedueto Loadtransferredtoanotherfeederduringservicerestoration(FLISR)g ( ) Optimalnetworkreconfigurationtoreducelosses(DMSapplication)

    Vreg not bi-directional

    2010 Quanta Technology LLC

    Incorrect Operation!

  • UseofBidirectionalVoltageRegulator

    CanUseBidirectionalvoltageregulatorcontrollertohandlefeederreconfiguration

    Thesemaketheoppositetappositionmovementwhenflowisfromthereversedirectiondirection

    Vreg bi-directional

    2010 Quanta Technology LLC

    Correct Operation!

  • Reverse Power Flow with DGReversePowerFlowwithDG ADGofsufficientsizecanreverse

    powerflow BidirectionalVoltageRegulator

    Vreg bi-directional

    g gmaynotworkcorrectly

    DGdoesnottypicallyprovideasourcestrengthstrongerthanthesubstation

    Direction of Power Flow

    1.0 1.0

    Normal Load

    DG

    substation. Substationsidevoltagedoesnot

    change, DGsidechangesE ith Bidi ti l V

    Direction of Power Flow

    Normal Load

    VsVl

    Vl = Vs

    EvenwithBidirectionalVreg,couldwinduploweringthevoltageonaportionorthefeederduringheavyload

    diti

    .901.0Increased

    Load

    Vs VlVl = Vs x .90

    DG

    conditions Conclusion: Needamore

    sophisticatedvoltagecontrolstrategywhenDGpenetrationis

    Vl

    Incorrect Operation!

    2010 Quanta Technology LLC

    largeenoughtoreversepowerflow

  • LimitationsofTraditionalVoltVARControl

    Current/VoltageSensor

    CapacitorBank

    Distribution Primary LineCurrent/Voltage

    Sensor

    Voltage R l tBank

    "Local" Current/Voltage

    Measurements On/Off Control Command

    Regulator

    "Local" Current/Voltage

    Measurements On/Off Control Command

    Standalone Controller

    CommandSignal Standalone

    Controller

    CommandSignal

    Thesystemisnotcontinuouslymonitored Thesystemlacksflexibilitytorespondtochangingconditionsoutonthe

    distribution feeders can misoperate following automatic reconfigurationdistributionfeeders canmisoperatefollowingautomaticreconfiguration Systemoperationmaynotbeoptimalunderallconditions Cannotoverridetraditionaloperationduringpowersystememergencies

    2010 Quanta Technology LLC

    Systemmaymisoperatewhenmoderngriddevices(e.g.,distributedgenerators)arepresent reversepowerflowfromDGcantrickstandalonecontrollertobelievefeederhasbeenreconfigured

  • ScorecardforTraditionalVoltVAR

    V lt VAR R i t Traditional Volt-Volt VAR Requirements Traditional VoltVARAcceptable Voltage Profile XAcceptable Power Factor XSelf MonitoringOperator OverridepFeeder Reconfiguration SmartGrid DevicesOptimal Coordinated ControlOptimal Coordinated ControlSelectable Operating Objectives

    2010 Quanta Technology LLC

  • SCADA Controlled VoltVARSCADA ControlledVolt VAR

    VoltVARpowerapparatusmonitoredandcontrolledbyp pp ySupervisoryControlandDataAcquisition(SCADA)

    VoltVARControltypicallyhandledbytwoseparate(i d d t) t(independent)systems: VARDispatch controlscapacitorbankstoimprovepowerfactor,

    reduceelectricallosses,etc

    VoltageControl controlsLTCsand/orvoltageregulatorstoreducedemandand/orenergyconsumption(aka,ConservationVoltageReduction)

    Operationofthesesystemsisprimarilybasedonastoredsetofpredeterminedrules (e.g.,ifpowerfactorislessthan0 95 then switch capacitor bank #1 off)

    2010 Quanta Technology LLC

    0.95,thenswitchcapacitorbank#1off )

  • Overall Objective of VAR dispatchOverallObjectiveofVARdispatch

    M

    2010 Quanta Technology LLC

  • VARDispatchComponents

    Switched&fixedfeedercapacitorbanks Capacitorbankcontrolinterfacep Communicationsfacility onewaypagingorload

    managementcommunicationsissufficient

    Meansofmonitoring3phasevarflowatthesubstation

    2010 Quanta Technology LLC

    substation

    MasterstationrunningVARdispatchsoftware

  • MonitoringRealandReactivePowerFlow

    2010 Quanta Technology LLC

  • VARDispatchRulesApplied

    2010 Quanta Technology LLC

  • RealandReactiveLoadIncreases

    2010 Quanta Technology LLC

  • ReactivePowerFlowExceedsThreshold

    2010 Quanta Technology LLC

  • CapacitorSwitchedOn

    2010 Quanta Technology LLC

  • ChangeinReactivePowerDetected

    2010 Quanta Technology LLC

  • ChangeinReactivePowerDetected

    Change detected by Substation

    RTU

    2010 Quanta Technology LLC

    RTU

  • BenefitsofVARDispatchvsTraditional

    SelfMonitoring Operatoroverridecapability

    2010 Quanta Technology LLC

    Someimprovementinefficiency

  • ObjectivesforSCADAVoltageControl

    Maintain acceptable voltage at all locationsMaintainacceptablevoltageatalllocationsunderallloadingconditions

    Operate at as low as voltage as possible to Operateataslowasvoltageaspossibletoreducepowerconsumption(akaConservationVoltage Reduction)VoltageReduction)

    2010 Quanta Technology LLC

  • ConservationVoltageReduction

    2010 Quanta Technology LLC

    Source: Tom Wilson PCS Utilidata

  • BenefitsofVoltageReductionforVariousTypesofLoads

    Constantimpedance (powerconsumedisproportionaltovoltagesquared) Incandescentlighting,resistivewaterheaters,stovetopandovercookingloads

    Constantpower (demandisconstantregardlessofvoltage) Electricmotors,regulatedpowersupplies

    Constantcurrent(demandisproportionaltovoltage)(fewofthistypeofload) Weldingunits,smelting,electroplatingprocesses

    Feederloadisalwaysamixofthedifferentloadtypes

    Rules of thumb: Rulesofthumb: 60/40split(constantpower/constant

    impedance)forsummerpeakloads

    40/60splitforwinterpeakloads 80/20forindustrialareas 70/30forresidentialloadinresidentialwith

    summerpeaking

    30/70forresloadwithwinterpeaking Commercialloads:50/50or60/40

    Source: Power Distribution Planning

    2010 Quanta Technology LLC

    Source:PowerDistributionPlanningReferenceBook,H.LeeWillis

  • BenefitsofVoltageReduction

    Worksbestwithresistiveload (lightingandresistiveheating)becausepowerdrawndecreaseswiththevoltagesquared.

    P = V 2 RConstant

    Impedance load

    Devicesthatoperateusingathermostatgenerallydonotreduceenergy thedevices

    2010 Quanta Technology LLC

    justrunlonger

  • BenefitsofVoltageReduction

    Efficiency improve for small voltage reduction

    Incremental change in efficiency drops off and then turns negative as voltage is reduced

    Negative effect occurs sooner for heavily loaded motors

    2010 Quanta Technology LLC

  • BenefitsofVoltageReductiononmotors Motorlossreductionisabalancingactbetweenmagnetic

    effectsandelectricaleffects: Magneticlosses(IronLosses)arereducedwhenvoltageislowered Motorcurrentincreasesasvoltageisdecreased(constantpowereffect) but

    ifmotorloadingislight,currentincreasesgradually

    Initialeffectisreducedenergyassumption,butasvoltageisdeceasedfurther,copperlossincreasesandmotorbecomeslessefficient

    Power Savings Obtained from Supply VoltageVariation on Squirrel Cage Induction Motors

    C. D. Pitis, BC Hydro Power Smart, and M. W. Zeller, BC Hydro Power Smart

    2010 Quanta Technology LLC

    BC Hydro Power Smart

  • EmergingLoadCharacteristics DigitalDevices:

    Typicallyhaveauniversalpowersupplycoveringawiderangeofinputvoltagevariations(e.g.:LCD/PlasmaTV&VCRs=80240V)g ( g )

    Constantpowerbehavior

    ElectricVehicleChargers:C Constantpower

    ConstantVoltage(regulatedoutput,duringmaintenancecharge) Constantcurrent(Lowstateofchargeandfastchargingtype)

    NiMH Charging Profile

    2010 Quanta Technology LLC

    Example charging curves for two EV chargers

  • Voltage Control ComponentsVoltageControlComponents

    EOF V ltEOF Voltage measurement126V

    Actual

    114V

    116VCVR

    Cutoff

    Voltage

    EOF = End of feeder

    2010 Quanta Technology LLC

  • EOFVoltageBelowVoltageControlThreshold(No Control Actions)(NoControlActions)

    EOF V ltVoltage Control

    ProcessorComm

    Interface

    EOF Voltage measurement126V

    Actual

    LTCSubstation

    RTUVolt Meter

    or AMRComm Interface

    LTCController

    Substation Transformer

    114V

    116VCVR

    Cutoff

    Voltage

    OO

    Reactive Power (MVAR)

    Real Power (MW) End ofFeeder

    OOOOOO

    OO Voltage Transformer

    Reactive Power (MVAR)EOF = End of feeder

    2010 Quanta Technology LLC

  • EOFVoltageAboveVoltageControlh h ldThreshold

    EOF V ltVoltage Control

    ProcessorComm

    Interface

    EOF Voltage measurement126V

    Actual Voltage

    LTCSubstation

    RTUVolt Meter

    or AMRComm Interface

    LTCController

    Substation Transformer

    114V

    116VCVR

    Cutoff

    OOEnd ofFeeder

    OOOOOO

    OO

    EOF = End of feeder

    2010 Quanta Technology LLC

  • EOFVoltageAboveVoltageControlThreshold(lower tap setting)(lowertapsetting)

    EOF V lt

    Voltage Control Processor

    Comm Interface

    Lower Tap

    EOF Voltage measurement126V

    Actual Voltage

    LTCSubstation

    RTUVolt Meter

    or AMRComm Interface

    LTCController

    Substation Transformer

    Setting

    114V

    116VCVR

    Cutoff

    OOEnd ofFeeder

    OOOOOO

    OOTransformer

    EOF = End of feeder

    2010 Quanta Technology LLC

  • EOFVoltageAboveVoltageControlThreshold(lower tap setting)(lowertapsetting)

    EOF V lt

    Voltage Control Processor

    Comm Interface

    Lower Tap

    EOF Voltage measurement126V

    Actual Voltage

    LTCSubstation

    RTUVolt Meter

    or AMRComm Interface

    LTCController

    Substation Transformer

    Setting

    114V

    116VCVR

    Cutoff

    OOEnd ofFeeder

    OOOOOO

    OOTransformer

    SelfMonitoring Operatoroverridecapability

    2010 Quanta Technology LLC

    CVRfunctionnotavailablewithtraditional

  • CVRbasedonVoltagemeasurementsCVRbasedonVoltagemeasurements

    HydroQuebecResults: Simplebutnotfullyeffective.Demonstrationprojectgained

    only 30% of the estimated energy consumption.only30%oftheestimatedenergyconsumption. Voltmetersnotreallyattheendofthefeeders.Voltmetersinstalledonlyon3phasescircuits.Targetsneedtocoveralsotheworstcasevoltagedropofthesinglephasenetworks.

    Networktopologyduringthedemonstrationproject(1yearaverage)wasnotinitsnormalstate40%ofthetime.

    Volt Meter

    Communication network

    Substation

    End of Feeder

    Regulationllcontroller

    A local regulation controller monitors the end of feeders voltage and

    2010 Quanta Technology LLC

    Source: Volt-VAR Control Implementation at Hydro Qubec; Presented by Herve Delmas to IEEE Smart Distribution Volt Var

    Task Force, January 2010

    A local regulation controller monitors the end of feeder s voltage and sets the tap to maintain this voltage at 115V.

  • LackofCoordinationbetweenVoltandlVARcontrol

    Switching a capacitor bank on raises theSwitchingacapacitorbankonraisesthevoltage,which: Increases no load losses in distribution Increasesnoloadlossesindistributiontransformers

    Increases energy consumption and possiblyIncreasesenergyconsumptionandpossiblydemand

    Lowering the voltage through CVR:LoweringthevoltagethroughCVR: Makesthecapacitorbankslesseffective(lowervoltage means less capacitive current delivered by

    2010 Quanta Technology LLC

    voltagemeanslesscapacitivecurrentdeliveredbythecapbanks)

  • SCADAVoltVARSummaryy Doesnot adapttochangingfeederconfiguration (rules are fixed in advance)configuration (rulesarefixedinadvance)

    Doesnot adapttovaryingoperatingneeds(rules are fixed in advance)(rulesarefixedinadvance)

    Overallefficiencyisimprovedversustraditional approach but is not necessarilytraditionalapproach,butisnotnecessarilyoptimalunderallconditions

    Operation of VAR and Volt devices is not OperationofVARandVoltdevicesisnotcoordinated

    Does not adapt well to presence of modern

    2010 Quanta Technology LLC

    Doesnot adaptwelltopresenceofmoderngriddevices suchasDG

  • SampleCalc:kWhLossSavingsDuetoVAR DispatchVARDispatch

    Sample Calculation 2: Savings Due to kWh Reduction Input Values: Target power factor (TPF) = 1 00 usefulTarget power factor (TPF) = 1.00 Average power factor (AVGPF) = .95 Peak load on feeder (PKLOAD) = 8,000 kilowatts Distribution losses (% of peak load) = 4.0% Average cost to purchase one kilowatt-hour = 0.04 $/kWh

    useful formula

    g p $ Annual savings per feeder = 8760 x .456 x DLOSS x PKLOAD x (1 AVGPF2 / TPF2) x .04 kWh per year = 8760 x 0.456 x 4% x 8000 x (1 - .952 / 1.02) * .04

    $ f = $4,985 per year per feeder

    2010 Quanta Technology LLC

  • SampleCalculation:DemandReductionDue to VAR DispatchDuetoVARDispatch

    Sample Calculation 3: Savings in Energy Supplier Demand ChargesSample Calculation 3: Savings in Energy Supplier Demand Charges Input Values: Target power factor (TPF) = 1.00g p ( )Power factor at peak load (PKPF) = .98 Peak load on feeder (PKLOAD) = 8,000 kilowatts Energy supplier demand charge (DEMCHG) = 20 $/kW

    useful formula

    Annual savings per feeder = (1/PKPF - 1/TPF) x 100 % x PKLOAD x DMDCHG = (1 / 0.98 1 / 1.00) x 100% x 8,000 x 20

    $3 265 f d = $3,265 per year per feeder

    2010 Quanta Technology LLC

  • Volt VAR ScorecardVoltVAR Scorecard

    Volt-VAR Approach

    Volt VAR Requirements Traditional Volt-VARSCADA Volt-

    VAR

    A t bl V lt P fil X X

    pp

    Acceptable Voltage Profile X XAcceptable Power Factor X XSelf Monitoring XOperator Override XOperator Override XFeeder Reconfiguration SmartGrid DevicesOptimal Coordinated ControlSelectable Operating Objectives

    2010 Quanta Technology LLC

  • VoltVAROptimization(CentralizedApproach)

    Developsandexecutesacoordinatedoptimalswitchingplanforall voltagecontroldevices

    Uses optimal power flow program to decide what to Usesoptimalpowerflowprogramtodecidewhattodo

    Achieves utilityspecified objective functions:Achievesutility specifiedobjectivefunctions: Minimize distribution system power loss Minimize power demand (sum of distribution power loss and

    customer demand)customer demand) Maximize revenue (the difference between energy sales and energy

    prime cost) Combination of the above

    Can bias the results to minimize tap changermovement and other equipment control actions that

    ddi i l d h h i l

    2010 Quanta Technology LLC

    put additional wear and tear on the physicalequipment

  • ModelingLoadVoltageSensitivity

    AccurateloadmodelforIVVC:

    Determineappropriatevaluesforcoefficientsonabove formula using field experiments andaboveformulausingfieldexperimentsandregressionanalysis

    2010 Quanta Technology LLC

  • VoltVAROptimization(VVO)Systemfi iConfiguration

    Temp Changes

    MDMSAMI Line Switch

    Distribution System Model

    Geographic Information

    System (GIS)

    Perm Changes

    Dynamic Changes

    Switched Cap

    Bank

    Distribution SCADA

    On-Line Power Flow (OLPF)

    IVVC Optimizing

    Engine

    Line Voltage

    RegulatorDevelops a coordinated

    optimalSubstation RTU

    Substation Transformer with TCUL

    Substation Capacitor

    B k

    optimal switching plan for all voltage control

    devices and executes the plan

    2010 Quanta Technology LLC

    with TCUL Bankexecutes the plan

  • VoltVAROptimization(VVO)SystemOperation

    Voltage Feedback

    Temp Changes

    MDMSAMI Line Switch

    Switch Status

    Voltage Feedback, Accurate load data

    Bank voltage & status, switch control

    Distribution System Model

    Geographic Information

    System (GIS)

    Perm Changes

    Dynamic Changes Switched

    Cap Bank

    switch control

    Distribution SCADA

    On-Line Power Flow (OLPF)IVVC requires real-

    time monitoring & control of sub &

    IVVC Optimizing

    Engine

    Line Voltage Regulator

    Monitor & control tap

    control of sub & feeder devices

    Substation RTU

    Substation Transformer with TCUL

    Substation Capacitor

    Bank Bank voltage & status

    pposition, measure load

    voltage and loadMonitor & control tap position, measure load

    voltage and load

    2010 Quanta Technology LLC

    Bank voltage & status, switch control

  • VoltVAROptimization(VVO)SystemOperation

    Temp Changes

    MDMSAMI Line Switch

    Cuts, jumpers, manual switching

    Real-Time Updates

    Distribution System Model

    Geographic Information

    System (GIS)

    Perm Changes

    Dynamic Changes Switched

    Cap Bank

    Distribution SCADA

    On-Line Power Flow (OLPF)Permanent asset changes

    (line extension, d t )

    IVVC Optimizing

    Engine

    Line Voltage Regulator

    reconductor)

    Substation RTU

    Substation Transformer with TCUL

    Substation Capacitor

    Bank

    IVVC requires an accurate, up-to date

    electrical model

    2010 Quanta Technology LLC

    Bank

  • VoltVAROptimization(VVO)SystemOperationOperation

    Temp Changes

    MDMSAMI Line Switch

    Distribution System Model

    Geographic Information

    System (GIS)

    Perm Changes

    Dynamic Changes Switched

    Cap Bank

    Distribution SCADA

    On-Line Power Flow (OLPF)

    OLPF calculates losses, voltage

    profile, etc

    IVVC Optimizing

    Engine

    Line Voltage Regulator

    PowerflowSubstation RTU

    Substation Transformer with TCUL

    Substation Capacitor

    Bank

    Powerflow Results

    2010 Quanta Technology LLC

    Bank

  • VoltVAROptimization(VVO)SystemOperationOperation

    Temp Changes

    MDMSAMI Line Switch

    Distribution System Model

    Geographic Information

    System (GIS)

    Perm Changes

    Dynamic Changes Switched

    Cap Bank

    Distribution SCADA

    On-Line Power Flow (OLPF)

    Determines optimal set of control

    actions to achieve a desired objective

    IVVC Optimizing

    Engine

    Line Voltage Regulator

    Powerflow

    j

    Substation RTU

    Substation Transformer with TCUL

    Substation Capacitor

    Bank

    Powerflow Results

    Alternative Switching

    2010 Quanta Technology LLC

    BankSwitching Plan

  • VoltVAROptimization(VVO)SystemOperationOperation

    Temp Changes

    MDMSAMI Line Switch

    Distribution System Model

    Geographic Information

    System (GIS)

    Perm Changes

    Dynamic Changes Switched

    Cap Bank

    Distribution SCADA

    On-Line Power Flow (OLPF)

    Determines optimal set of control

    actions to achieve a desired objective

    IVVC Optimizing

    Engine

    Line Voltage Regulator

    j

    Substation RTU

    Substation Transformer with TCUL

    Substation Capacitor

    Bank

    Optimal Switching

    2010 Quanta Technology LLC

    BankSwitching Plan

  • ImpactofVoltageReductiononCustomers

    In most cases, voltage reduction does not impactInmostcases,voltagereductiondoesnotimpactcustomerequipment,but..

    Somecustomersareawareoftheprincipleofvoltagep p greductionandgavealreadytakenstepstolowertheirvoltageviaindividualservicevoltageregulators(e.g.Smartmotorcontrollers)

    Whenutilitylowersthevoltageonthefeeder,h l d l hcustomerswhoarealreadyloweringtheirown

    voltagewillgobelowtheminimum

    2010 Quanta Technology LLC

  • Voltage Reduction LimitationsVoltageReductionLimitations Feedersvoltagelimited?

    Maynotbeabletoreducevoltageatall Mayneedtoflattenthevoltageprofile(Progressenergy,GeorgiaPower,etc)

    2010 Quanta Technology LLC

  • CurrentTechnologies,LLC

    2010 Quanta Technology LLC

  • TimeDecayofCVREffects Themostreductionoccursrightwhenthevoltageisreducedandthensomeofthereductionislostassome loads j st r n longersomeloadsjustrunlonger

    2010 Quanta Technology LLC

  • IVVCBenefitsD i d l d t t ti ll h Dynamicmodelupdatesautomaticallywhenreconfigurationoccurs

    Volt VARcontrolactionsarecoordinated

    SystemcanmodeltheeffectsofDistributedGenerationandothermoderngridelements

    Producesoptimalresults

    Accommodatesvaryingoperatingobjectivesd di t d

    2010 Quanta Technology LLC

    dependingonpresentneed

  • Benefits of Volt VAR OptimizationBenefitsofVoltVAROptimization CVRFactor=P/VbasiconactualCVRexperience:

    BC H d CVR 0 7 BCHydroCVRf = 0.7 ProgressEnergyCVRf =0.8 Georgia Power CVRf = 0 8GeorgiaPowerCVRf = 0.8

    AnnualEnergySavings =AverageLoadx#Hoursperyearx%voltagereductionxCVRfxvalueofenergyconservationLostrevenuefromkWhsales

    CVRperformedduringpeakloadperiodcanbeviewedasdemand (capacity) reductiondemand(capacity)reduction

    2010 Quanta Technology LLC

  • Final VoltVAR ScorecardFinalVolt VAR Scorecard

    Volt VAR Approach

    Volt VAR Requirements Traditional Volt-VARSCADA Volt-

    VARIntegrated Volt-

    VAR

    A t bl V lt P fil X X X

    Volt-VAR Approach

    Acceptable Voltage Profile X X XAcceptable Power Factor X X XSelf Monitoring X XOperator Override X XF d R fi tiFeeder Reconfiguration XSmartGrid Devices XOptimal Coordinated Control XSelectable Operating Objectives X

    2010 Quanta Technology LLC

  • VoltVAROptimization NextSteps

    SUBSTATION

    PV Inverter PV

    Inverter

    SUBSTATION

    PV Inverter PV

    Inverter

    SUBSTATION

    FEEDER

    Supplementary Regulators

    Supplementary Regulators

    Rotating DG

    SUBSTATION

    FEEDER

    Supplementary Regulators

    Supplementary Regulators

    Rotating DG

    Rotating DG

    Rotating

    Capacitor ControlLTC Control

    PF Rotating

    Rotating DG

    PV Inverter PV

    Inverter

    RotatingRotating

    Capacitor ControlLTC Control

    PF RotatingRotating

    Rotating DG

    Rotating DG

    PV Inverter PV

    Inverter

    Rotating DG Capacit

    or

    Rotating DG

    Rotating DG

    Rotating DG Capacit

    or

    Rotating DG

    Rotating DG

    Voltage and VAR Regulation

    Coordination Al ith

    Manages tap changer settings, inverter and rotating machine VAR levels, and capacitors to regulate voltage, reduce l d

    Communication Link

    Voltage and VAR Regulation

    Coordination Al ith

    Manages tap changer settings, inverter and rotating machine VAR levels, and capacitors to regulate voltage, reduce l d

    Communication Link

    2010 Quanta Technology LLC

    Algorithm losses, conserve energy, and system resources

    Algorithm losses, conserve energy, and system resources

  • FeederFlowandResourceControl(DG+ES)

    ES

    DR

    Utility grid

    DR

    PG

    DG

    RES

    ConstantpowerfloworfirmingupPW

    rateofchangeatPCC Eliminateadverseimpact

    Reduce reserve capacity requirement

    2010 Quanta Technology LLC

    Reducereservecapacityrequirement