1 Complexation Titration

  • Upload
    ayukiwa

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 1 Complexation Titration

    1/124

    Complexation Titration

  • 8/12/2019 1 Complexation Titration

    2/124

    Forming Complexes

    Most metals ions react with electron-pairdonors to form coordination compounds or

    complexes.

    The donor species (ligand) must have atleast one pair of unshared electrons

    available for bond formation.

    Cu(H2O)42+, Cu(NH3)42+, Cu(NH2CH2COO)2

    CuCl42-

  • 8/12/2019 1 Complexation Titration

    3/124

    Ligands

    A ligands is a neutral molecule or ion having alone pair that can be used to form a bond to a

    metal ion. Chelating agents: unidentate, bidentate,

    tridentate, tetradentate,pentadentate,

    hexadentate

  • 8/12/2019 1 Complexation Titration

    4/124

    Gramicidin A antibiotic ion channel

  • 8/12/2019 1 Complexation Titration

    5/124

    Nonact informs a complex with the K + ion; the

    coordination occurs through the 8 O atoms.

  • 8/12/2019 1 Complexation Titration

    6/124

  • 8/12/2019 1 Complexation Titration

    7/124

    Chelation in Biochemistry

    Chelating ligands can form

    complex ions with metals

    through multiple ligands.This is important in many

    areas, especially

    biochemistry.

  • 8/12/2019 1 Complexation Titration

    8/124

  • 8/12/2019 1 Complexation Titration

    9/124

    Box 13-1 Chelation Therapy & Thalassemia

    A successful drug for iron excretion

  • 8/12/2019 1 Complexation Titration

    10/124

    The ions of alkali metals cam form complexes with crown

    ether and cryptand

    D. J. Cram, C. J. Pedersen and J.-M. Lehn Nobel prize inChemistry in 1987

  • 8/12/2019 1 Complexation Titration

    11/124

    Crown Ether Complex of Potassium

    Potassium permanganate is dissolved in

    benzene by addition of 18-crown-6.

  • 8/12/2019 1 Complexation Titration

    12/124

    Coordination Compounds

    colored & paramagnetic (often)consists of a complex ion

    (1) Coordination compounds are neutral

    species in which a small number ofmolecules or ions surround a central

    metal atom or ion.

    ex.[Co(NH3)5Cl]Cl2

    complex ion : [Co(NH3)5Cl]2+

  • 8/12/2019 1 Complexation Titration

    13/124

    Coordination Compounds

    coordinate covalent bond

    Complex ion = metal cation + ligands

    e acceptor e donor

    center (one) surrounding (

    2 )transion metal

    Lewis acid Lewis base

    [ Co(NH3)5Cl ]Cl2

    H2O , NH3 , :Cl

    ..

    .... ..

    ..

    ionic force

    counter ionscentral metal ligands

    complex ion

  • 8/12/2019 1 Complexation Titration

    14/124

    20.3 Coordination Compounds

    (2) Coordination number :

    The # of donor atoms surrounding the central

    metal

    The most common : 4 or6

    (3) Ligands :

    A neutral molecule or ion having a line pair that

    can be used to from a bond to a metal ion.

    monodentate : H2O , NH3bidentate : en , ox

    polydentate : EDTA

    Chelating agents

    http://localhost/var/www/apps/conversion/tmp/scratch_10/f20.6.ppthttp://localhost/var/www/apps/conversion/tmp/scratch_10/f20.7-8.ppthttp://localhost/var/www/apps/conversion/tmp/scratch_10/f20.7-8.ppthttp://localhost/var/www/apps/conversion/tmp/scratch_10/f20.6.ppt
  • 8/12/2019 1 Complexation Titration

    15/124

    13-1 Metal-Chelate Complexes

    EDTA forms strong 1:1 complexes with most metal ions

    As a metal-binding agent

  • 8/12/2019 1 Complexation Titration

    16/124

    Useful chelating agents

  • 8/12/2019 1 Complexation Titration

    17/124

    13-2 EDTA(ethylenediaminetetraacetic acid, a hexadentate)

    (1) The most widely used chelating agent in titration

    (2) Forms strong 1:1 complexes regardless of the charge onthe cation

  • 8/12/2019 1 Complexation Titration

    18/124

  • 8/12/2019 1 Complexation Titration

    19/124

    Acidic Properties of EDTA

    C CN N

    CH2-COOH

    CH2-COOH

    HOOC-H2C

    HOOC-H2C

    H H

    HH

    C CN N

    CH2-COOH

    CH2-COO-

    -OOC-H2C

    HOOC-H2C

    H H

    HH

    H++

    H

    H4Y

  • 8/12/2019 1 Complexation Titration

    20/124

    C CN NCH2-COOH

    CH2-COO-

    -OOC-H2C

    -OOC-H2C

    H H

    HH

    H++

    H

    C CN N

    CH2-COO-

    CH2-COO-

    -OOC-H2C

    -OOC-H2C

    H H

    HH

    H++H

    H3Y-K1=1.0210

    -2

    H2Y-2K2=2.1410

    -3

  • 8/12/2019 1 Complexation Titration

    21/124

    C CN N

    CH2-COO-

    CH2-COO-

    -

    OOC-H2C

    -OOC-H2C

    H H

    HH

    H+

    C CN N

    CH2-COO-

    CH2-COO-

    -OOC-H2C

    -OOC-H2C

    H H

    HH

    HY-3K3=6.9210

    -7

    Y-4K4=5.510

    -11

  • 8/12/2019 1 Complexation Titration

    22/124

    The Nature of EDTA Complexes

    with Metal Ions

    The reagent combines with metal ions in a 1:1 ratioregardless of the charge on the cation.

    M+n+Y-4 MY+(n-4)

    ]][[

    ][4

    )4(

    YM

    MY

    K n

    n

    MY

  • 8/12/2019 1 Complexation Titration

    23/124

    (1) Multidentate chelating agents form strongercomplexes (Kf) with metal ions than bidentateor monodentate ligands.

    (2) Neutral EDTA is a tetrabasicacid

    (3) Metal-EDTA complex is unstable at both low pH& high pH.

    At low pH H+& M n+

    At high pH OH-& EDTA

    For EDTA

    ][Y][M

    ][MY

    KMYYM 4

    4

    f

    44

    n

    nnn

  • 8/12/2019 1 Complexation Titration

    24/124

    Pb2+as example:

    At pH 10, tartrate is present

    to prevent Pb(OH)2

    Pb-tartrate complex must be

    less stable than Pb-EDTA

    (4) Auxiliary complexing agents:

    prevent metal ions from

    precipitating.

  • 8/12/2019 1 Complexation Titration

    25/124

    13-3 Metal Ion Indicators

    Metal ion indicator: a compound whose color changes whenit binds to a metal ion.

    For an useful indicator, it must bind metal less strongly thanEDTA does.the indicator must release its metal to EDTA

    Example: MgIn + EDTAMgEDTA + In Indicator is pH dependent.

    If metal blockthe indicator, use back titration.

    NH3

    NH3

    [H3N:Cu:NH3]2+Cu2+ + 4:NH3

    pale bule deep bule

    :

    :

  • 8/12/2019 1 Complexation Titration

    26/124

    Demonstration 13-1 Metal Ion IndicatorColor Changes

    P.294

  • 8/12/2019 1 Complexation Titration

    27/124

    COLOR PLATE 8

    Titration of Mg2+by EDTA, Using Eriochrome Black T Indicator

    (a) Before (left), near (center), and after (right) equivalence point.

    (b) Same titration with methyl red added as inert dye to alter

    colors.

    Demonstration 13-1 Metal Ion Indicator Color Changes

  • 8/12/2019 1 Complexation Titration

    28/124

    Indicator for EDTA Titrations

    Ertichrome Black T

    H2O+H2In-

    HIn-2

    +H3O+

    H2O+HIn-2

    In-3

    +H3O+

    O2N

    SO3-

    OH

    N

    N

    OH

    K1=510-7

    K2=2.810-12

    red blue

    blue orange

    MIn-+HY

    -3 HIn-2

    +MY-2

    red blue

  • 8/12/2019 1 Complexation Titration

    29/124

    At the end point:

    MgIn + EDTA MgEDTA + In-

    (red) (colourless) (colourless) (Blue)

    Before Titration:

    Mg2+ + In- MgIn(colourless) (blue) (red)

    During Titration: Before the end point

    Mg2+ + EDTA MgEDTA

    (free Mg2+

    ions) (Solution red due to MgIn complex)

    Compounds changing colour when binding

    to metal ion.

    Kffor Metal-In-< Kffor Metal-EDTA.

  • 8/12/2019 1 Complexation Titration

    30/124

    Requirements for Indicator

    Metal-indicator complex must be less stablethan the metal-EDTA complex.

    Binding between metal and indicator must notbe too weak. It has to avoid EDTA replacing at

    the beginning of the titration.

    In general, the metal-indicator complex shouldbe 10 to 100 timesless stable than the metal-

    titrant complex.

  • 8/12/2019 1 Complexation Titration

    31/124

  • 8/12/2019 1 Complexation Titration

    32/124

  • 8/12/2019 1 Complexation Titration

    33/124

  • 8/12/2019 1 Complexation Titration

    34/124

  • 8/12/2019 1 Complexation Titration

    35/124

  • 8/12/2019 1 Complexation Titration

    36/124

  • 8/12/2019 1 Complexation Titration

    37/124

  • 8/12/2019 1 Complexation Titration

    38/124

    Eriochrome Black T is blue, but turns red in the presence of metals

    http://upload.wikimedia.org/wikipedia/en/2/2b/Erichrome.JPG
  • 8/12/2019 1 Complexation Titration

    39/124

    13-4 EDTA Titration Techniquesare useful for the determination of [metal]

    Direct titration Titrate with EDTA Buffered to an appropriate pH Color distinct indicator Auxiliary complexing agent

    Back titration Excess EDTA, & titrate with metal ion For analyte

    ppt in the absence of EDTA :

    Ex: (Al3+-EDTA)at pH 7, indicator Calmagite) backtitration with Zn2+react slowly with EDTA

    block the indicator

  • 8/12/2019 1 Complexation Titration

    40/124

    Displacement titration No satisfactory indicator Ex1: Hg2++ MgY2-HgY2-+ Mg2+ KfHgY

    2- >MgY2-

    Ex2: 2Ag++ Ni(CN)42-2Ag(CN)2+ Ni2+ , Ni2+is titrated with EDTA

    Indirect titration Determine [Anion] that precipitate metal ions: CO3

    2-, CrO42-S2-SO4

    2-

    Ex: SO42-+ Ba2+BaSO4(s) at pH 1

    filter BaSO4(s) and boil with excess EDTA at pH 10

    Ba(EDTA)2-and excess EDTA is back titration with Mg2+

    Masking

    Masking prevents one element from interfering in the analysis ofanother element.

    Ex: Al3++ Mg2++ F-AlF63++ Mg2+then only Mg2+can be react with

    EDTA masking Al3+with F- Masking agent: CN- , F- (using with pH control to avoid HCN & HF)

  • 8/12/2019 1 Complexation Titration

    41/124

    In general, the metal-indicator complex should

    be 10 to 100 times less stable than the metal-

    titrant complex

    Expt:

    The formation constants of the EDTA complexes

    of Ca2+

    and Mg2+

    are too close to differentiatebetween them in an EDTA titration, so they will

    titrate together. Ca2+can actually be titrated in the

    presence of Mg2+by raising the pH to 12 with

    strong alkali; Mg(OH)2precipitates and does nottitrate.

    E ilib i C l l ti

  • 8/12/2019 1 Complexation Titration

    42/124

    Equilibrium Calculations

    Involving EDTA

    EDTA titrations are always performed insolutions that are buffered to a known pH to

    avoid interferences by other cations or toensure satisfactory indicator behavior.

  • 8/12/2019 1 Complexation Titration

    43/124

  • 8/12/2019 1 Complexation Titration

    44/124

  • 8/12/2019 1 Complexation Titration

    45/124

    Conditional Formation Constant

    .applicableisfor whichpHat theonlyconstantaisK

    ][

    ][

    ][

    ][

    ]][[

    ][

    ][][][][][

    ][][][][

    4

    '

    MY

    )4(

    4

    '

    4

    )4(

    4

    )4(

    43

    2

    2

    34

    4321321

    2

    21

    3

    1

    4

    43214

    Tn

    n

    MYMY

    T

    n

    n

    MYn

    n

    MY

    T

    CM

    MY

    KK

    CM

    MYK

    YM

    MYK

    YHYHYHHYYC

    KKKKHKKKHKKHKH

    KKKK

  • 8/12/2019 1 Complexation Titration

    46/124

    D

    HKKK

    DHKK

    D

    HK

    D

    H

    KKKKHKKKHKKHKHD

    ][

    ][

    ][

    ][

    ][][][][

    3213

    2

    212

    3

    11

    4

    0

    4321321

    2

    21

    3

    1

    4

  • 8/12/2019 1 Complexation Titration

    47/124

    13-5 The pH-dependent Metal-EDTA

    Equilibrium

    Since the anion Y4-is the ligand species in complexformation, the complexation equilibria are affected

    markedly by the pH

    Fraction Composition of EDTA Solutions

    .....KKK

    ][H

    KK

    ][H

    K

    ][H1

    1

    ][Y

    [EDTA]

    KKKKK][HKKKKK][HKKKK][HKKK][HKK][HK][H

    KKKKKK

    ][EDTAY[EDTA]

    ][Y

    ][Y][HY]Y[H]Y[HY][H]Y[H]Y[H

    ][Y

    654

    3

    65

    2

    6Y

    4

    5432154321

    2

    4321

    3

    321

    4

    21

    5

    1

    6

    654321

    Y

    Y

    4

    4

    Y

    4322345

    26

    4

    Y

    4

    4

    44

    4

  • 8/12/2019 1 Complexation Titration

    48/124

    15D-3 Equilibrium: pH dependent M-Y

    YH4

    4

    a4a3a2a1a3a2a1

    2

    a2a1

    3

    a1

    4

    a4a3a2a14

    a4a3a2a1

    4

    a4a3a2

    3

    a4a3

    2

    a444

    YH

    4

    4

    CY

    KKKK][HKKK][HKK][HK][H

    KKKK

    KKKK

    ][H

    KKK

    ][H

    KK

    ][H

    K

    ][H1

    1

    ][Y

    C

  • 8/12/2019 1 Complexation Titration

    49/124

    Species EDTA as a function of pH

    Y4- complexes with metal ions and so the complexation equilibria are very pH dependent

  • 8/12/2019 1 Complexation Titration

    50/124

    Fig. 9.1. Fraction of EDTA species as a function of pH.

    Y complexes with metal ions, and so the complexation equilibria are very pH dependent.

    Only the strongest complexes form in acid solution, e.g., HgY2-; CaY2-forms in alkaline solution.

    Gary Christian,

    Analytical Chemistry,

    6th Ed. (Wiley)

  • 8/12/2019 1 Complexation Titration

    51/124

    C l l ti f th C ti

  • 8/12/2019 1 Complexation Titration

    52/124

    Calculation of the Cation

    Concentration in EDTA Solutions

    Calculate 4

    Calculate conditional formation constants K

    Ni+2+Y-4 NiY -2

    184

    )4(

    102.4]][[

    ][

    YNi

    NiYK n

    n

    MY

    0.015M-xx x

    Calculate equilibrium [Ni+2] at pH=3 and pH=8

  • 8/12/2019 1 Complexation Titration

    53/124

    pH 4 pH 4

    2 3.710-14 8 5.410-3

    3 2.510-11

    9 5.210-2

    4 3.610-9 10 3.510-1

    5 3.510-7 11 8.510-1

    6 2.210-5 12 9.810-1

    7 4.810-4

    Value for 4 for EDTA at selected pH value

  • 8/12/2019 1 Complexation Titration

    54/124

  • 8/12/2019 1 Complexation Titration

    55/124

    )(101.8][Ni1027.2015.0

    1027.2102.4104.5K8pH

    )(102.1][Ni1005.1015.0

    1005.1102.4105.2K3pH

    KK

    CY][H]Y[H]Y[H][HY][Y][Ni

    10216

    2

    16183'

    NiY

    528

    2

    81811'

    NiY

    NiY4

    '

    NiY

    T43

    2

    2

    342

    Mxx

    x

    Mxx

    x

  • 8/12/2019 1 Complexation Titration

    56/124

    C diti l F ti C t t

  • 8/12/2019 1 Complexation Titration

    57/124

    Conditional Formation Constant

    Most of the EDTA is not Y4-

    belowpH=pK6=10.37. The species HY3-, H2Y

    2-, and soon, predominate at lower pH.

    It is convenient to express the fraction of freeEDTA in the form Y4-

    P.300

  • 8/12/2019 1 Complexation Titration

    58/124

    The number Ktf =Y4- ,Kfis called the conditional formationconstantor the effective formation constant.

    P.300

    (1) We can use Kfto calculate the equilibrium concentrationsof the different species at a given pH.

    (2) Kf : HgY-2PbY-2CaY-2KfpHKf

    pH

    pH9.0Kf

    EDTA(pH9.0)

  • 8/12/2019 1 Complexation Titration

    59/124

  • 8/12/2019 1 Complexation Titration

    60/124

    Complex-Formation Titrations

  • 8/12/2019 1 Complexation Titration

    61/124

    Complex-Formation TitrationsFormation Constants for EDTA Complexes

    Cation KMY Log KMY Cation KMY Log KMYAg+ 2.1 x 107 7.32 Cu2+ 6.3 x 1018 18.80

    Mg2+ 4.9 x 108 8.69 Zn2+ 3.2 x 1016 16.50

    Ca2+

    5.0 x 1010

    10.70 Cd2+

    2.9 x 1016

    16.46Sr2+ 4.3 x 108 8.63 Hg2+ 6.3 x 1021 21.80

    Ba2+ 5.8 x 107 7.76 Pb2+ 1.1 x 1018 18.04

    Mn2+

    6.2 x 1013

    13.79 Al3+

    1.3 x 1016

    16.13Fe2+ 2.1 x 1014 14.33 Fe3+ 1.3 x 1025 25.1

    Co2+ 2.0 x 1016 16.31 V3+ 7.9 x 1025 25.9

    Ni2+ 4.2 x 1018 18.62 Th4+ 1.6 x 1023 23.2

    K = conditional formation constant = K

  • 8/12/2019 1 Complexation Titration

    62/124

    Fig. 9.2. Effect of pH on Kf values for EDTA chelates.

    Kf= conditional formation constant = Kf4.

    It is used at a fixed pH for equilibrium calculations (but varies with pH since 4does).

    Gary Christian,

    Analytical Chemistry,

    6th Ed. (Wiley)

    As the pH increases the equilibrium shifts to the right

  • 8/12/2019 1 Complexation Titration

    63/124

    Fig. 9.3. Titration curves for 100 mL 0.1 M Ca2+

    versus 0.1 M Na2EDTA at pH 7 and 10.

    As the pH increases, the equilibrium shifts to the right.

    Gary Christian,

    Analytical Chemistry,

    6th Ed. (Wiley)

    E l

  • 8/12/2019 1 Complexation Titration

    64/124

    Example atp . 277

    pH affects the titration of Ca2+with EDTA

    K,

    f

    is smaller at lower pH.

  • 8/12/2019 1 Complexation Titration

    65/124

    470

    Figure 17-7Influence of pH on the

    titration of 0.0100 M

    Ca2+with 0.0100 M

    EDTA. Note that the

    end point becomes lesssharp as the pH

    decreases because the

    complex formation

    reaction is lesscomplete under these

    circumstances.

  • 8/12/2019 1 Complexation Titration

    66/124

    471

    Figure 17-8

    Titration curves for 50.0 mL of 0.0100 M solutions of

    various cations at pH 6.0.

    The points represent the pH at which the conditional formation

  • 8/12/2019 1 Complexation Titration

    67/124

    Fig. 9.4. Minimum pH for effective titrations

    of various metal ions with EDTA.

    constant, Kf', for each metal is 106, needed for a sharp end point.

    Gary Christian,

    Analytical Chemistry,

    6th Ed. (Wiley)

    The Effect of Other Complexing

  • 8/12/2019 1 Complexation Titration

    68/124

    472

    Figure 17-10

    Influence of ammoniaconcentration on the end

    point for the titration of 50.0

    mL of 0.00500 M Zn2+.

    Solutions are buffered to pH

    9.00. The shaded region

    shows the transition range

    for Eriochrome Black T.

    Note that ammonia

    decreases the change in

    pZn in the equivalence-

    point region.

    p gAgents on EDTA Titration Curves

    Formation constants are the equilibrium

  • 8/12/2019 1 Complexation Titration

    69/124

    Formation constants are the equilibrium

    constants for complex ion formation one

    ligand at a time.

    The overall or cumulative formation of the complex ion at

    any given step in this process is denoted as beta, .For step 2: the cumulative equation is the sum ofequations 1 and 2 in the formation process.

  • 8/12/2019 1 Complexation Titration

    70/124

    12.5 Auxiliary Complexing Agents

  • 8/12/2019 1 Complexation Titration

    71/124

    12.5 Auxiliary Complexing Agents

    Metal-ligand Equilibria; Fractions of metal ion in

    solution: General formula to find fraction of metal ion

    in solution with all of its complexed ions:

    Problem: Ammonia complexes of zinc: Zn2+and NH3form four complexes. If the concentration of free,

    unprotonated NH3is 0.10 M, find the fraction of zinc in

    the form Zn2+.

    Problem: Find the fraction of thallium present whenthallium complexes with 0.20 M CN. Thallium forms

    four complexes with cyanide ion: log K1= 13.21, log K2

    = 13.29, log K3= 8.67, log K4= 7.44.

    13 6 EDTA Tit ti C

  • 8/12/2019 1 Complexation Titration

    72/124

    13-6 EDTA Titration Curves

    The end point break depends upon1) [Mn+]

    2) [L1]

    3) [pH] selectivity

    4) Kf

    The smaller Kf, the more alkaline the solution must

    be to obtain a kfof 106.

  • 8/12/2019 1 Complexation Titration

    73/124

    12-3 EDTA Titration Curves

    The titration curve is a graph of pMversus the volume of added EDTA.

    The right side figure illustrates forreaction of 50.0 mL of 0.050 0 M

    Mn+with 0.050 0 M EDTA,assuming Kf

    = 1.15 1016,

    where the concentration of free

    Mn+decreases as the titration

    proceeds.

    There are three regions in anEDTA titration curve:

    (a) Before the equivalence point.

    (b) At the equivalence point.

    c After the e uivalence oint.

    EDTA Titration Curve

  • 8/12/2019 1 Complexation Titration

    74/124

    EDTA Titration CurveRegion 1

    Excess Mn+left after each addition

    of EDTA. Conc. of free metal

    equal to conc. of unreacted Mn+.

    Region 2

    Equivalence point:[Mn+] = [EDTA]

    Some free Mn+generated by

    MYn-4 Mn++ EDTA

    Region 3Excess EDTA. Virtually all metal

    in MYn-4form.

  • 8/12/2019 1 Complexation Titration

    75/124

    Since at equivalence point,there is exactly as muchEDTA as metal in the

    solution, we can treat thesolution as if it had beenmade by dissolving pureMYn4. Some free Mn+isgenerated by the slightdissociation of MYn4:

    The Ca2+end point is moredistinct than the Sr2+end

    point because theconditional formationconstant, for CaY2is greaterthan that of SrY2

  • 8/12/2019 1 Complexation Titration

    76/124

    470

    Figure 17-6

    EDTA titration curves for

    50.0 mL of 0.00500 MCa2+(KCaY=1.7510

    10) and

    Mg2+(KMgY=1.72108) at pH

    10.0. Note that because of the

    larger formation constant, the

    reaction of calcium ion withEDTA is more complete, and a

    larger change occurs in the

    equivalence-point region. The

    shaded areas show the

    transition range for the

    indicator Eriochrome Black T.

    The titration rxn:

  • 8/12/2019 1 Complexation Titration

    77/124

    Mn++ EDTAMYn-4

    Kf= 4Kf

    Three regions:(1) Before equivalence

    point : excess Mn+(2) At equivalence point

    [Mn+]= [EDTA]

    (3) After equivalence point :

    excess EDTA

    Example at p.302

    f C 2 2

  • 8/12/2019 1 Complexation Titration

    78/124

    Titration of Ca+2and Mg+2

    The K of EDTA of Ca+2and Mg+2are tooclose to differentiate between them in an

    EDTA titration.

    Generally, they will titrate together. This titration is used to determine totalhardness of water.

    Ti i f C 2

  • 8/12/2019 1 Complexation Titration

    79/124

    Titration of Ca+2

    EB-T cannot be used to indicate the directtitration of Ca+2in the absence of Mg+2with

    EDTA.

    The indicator forms too weak a complex withCa+2to give a sharp end point.

    Example: calculate the pZn of solutions

  • 8/12/2019 1 Complexation Titration

    80/124

    Example: calculate the pZn of solutions

    prepared by adding 20.0, 25.0, and 30.0 mL of

    0.0100M EDTA to 50.0 mL of 0.00500M Zn2+

    .Assume that both the Zn2+and EDTA solutions

    are 0.100M in NH3and 0.175M NH4Cl to provide

    a constant pH of 9.0

    pH9.0(NH3+NH4Cl)0.0100M

    EDTA50.00mL 0.00500M Zn2+pZn

    EDTA(a) 20.0 mL (b)25.0 mL (c) 30.0 mL

    KZnY:pHNH3

    K"ZnY= M4KZnY =[ZnY2-]

    CTCM

  • 8/12/2019 1 Complexation Titration

    81/124

    476

    Figure 17-11

    Structure andmolecular model of

    Eriochrome Black

    T. The compound

    contains a sulfonicacid group that

    completely

    dissociates in

    water and two

    phenolic groupsthat only partially

    dissociate.

  • 8/12/2019 1 Complexation Titration

    82/124

  • 8/12/2019 1 Complexation Titration

    83/124

    478

    Figure 17-12

    Structural formulaand molecular

    model of

    Calmagite. Note the

    similarity toEriochrome Black T

    (see Figure 17-11).

    Example 17 5

  • 8/12/2019 1 Complexation Titration

    84/124

    Example 17-5

    Determine the transition ranges for Eriochrome

    Black T in titrations of Mg2+and Ca2+at pH 10.0,given that (a) the second acid dissociation

    constant for the indicator is

    (b) The formation constant for MgIn-is

    (c) Ca2+ Kf= 2.5x105

    H2O + HIn2- In3- + H3O+ K2= 2.8 x 10-12

    Mg2+ + In3- MgIn- Kf= 1.0 x 107

    pH10.0EBTCa2+

    Mg2+EBT

    R l ti

  • 8/12/2019 1 Complexation Titration

    85/124

    Resolution

    A small measured amount of Mg+2is added tothe Ca+2solution.

    Ca+2gives more stable K than Mg+2.

    A correction is made for the amount of EDTAused for titration of the Mg+2.

  • 8/12/2019 1 Complexation Titration

    86/124

    At the end point:MgIn + EDTA MgEDTA + In-

    (red) (colourless) (colourless) (Blue)

    Before Titration:

    Ca+2+EDTA+Mg2++In- MgIn+CaEDTA

    During Titration: Before the end point Ca2+ + EDTA CaEDTA

    Kffor Mg+2-EDTA < Kffor Ca

    +2-EDTA.

    EDTA tit ti l l ti

  • 8/12/2019 1 Complexation Titration

    87/124

    EDTA titration calculations

    Problem 12-7: Consider the titration of 25.0 mL of 0.0200M MnSO4with 0.0100 M EDTA in a solution buffered to

    pH 8.00. Calculate pMn2+at the following volumes of

    added EDTA and sketch the titration curve: (a) 0 ml, (b)

    20.0 ml, (c) 40.0 ml, (d) 49.0 ml, (e) 49.9 ml, (f) 50.0 ml,

    (g) 50.1 ml, (h) 55.0 ml, (i) 60.0 ml.

    Solution: from Table 12.2, we get log(Kf) = 13.89. At pH= 8.00, (Y4-) = 4.2 x10-3.

    The above calculation will be carried out based on

    whether the titration is before or after the equivalence

    point. Here Ve*0.0100 M = 25.0*0.0200 M; Ve = 50.0 ml

  • 8/12/2019 1 Complexation Titration

    88/124

    (a) to (e) are before the equivalence point and will follow the samecalculation equation:

    [Mn2+] * (0.025 + V) = 0.025 *0.020.01*V

    (f) this is the equivalence pointKf = 4.2 x10-3x 1013.89= [MnY2-]/([Mn2+][EDTA])

    = (0.02*0.025/0.075)/ ([Mn2+])2

    [Mn2+] =8.179 x10-7.

    pMn2+=

    Calculations (g) to (i) are beyond the equivalence point, where[EDTA] can be obtained from the following

    [EDTA]*(0.025 + V) = 0.01*V0.02*0.025

    then Kf = 4.2 x10-3x 1013.89= [MnY2-]/([Mn2+][EDTA])

    A beaker containing 50.0 mL of 0.300 M Ca2+ at pH 9 is titrated

  • 8/12/2019 1 Complexation Titration

    89/124

    g pwith 0.150 M EDTA.The pCa at the equivalence point is:(a) 4.97.

    (b) 5.13.(c) 5.84.

    For Ca2+ Kf= 1010.65 ; = 0.041 at pH = 9

    2

    ' 9

    21.8 10f

    CaYK

    Ca EDTA

    22

    2

    9 9

    0.1

    1.8 10 1.8 10

    CaYCa

    2 67.45 10Ca

    pCa= 5.13

    At the equivalent point, all Ca2+ions have formed complex

    and free Ca2+come from the dissociation of complex:

    CaY2- Ca2+ + EDTA

  • 8/12/2019 1 Complexation Titration

    90/124

    "50 Mg2+ 0.050M " EDTA 0.050M . pH .10.0

    Mg2+ ? K=2.02 x 108

    EDTA ,+Mg2 :. Y4- - Mg2+ 1:1 MgY2-.

    [MgY2-]50.0ml x 0.05M

    100ml= 0.025M

    Mg2+ + Y4- MgY2-

    K =[MgY2-]

    [Mg2+] [Y4-]= 2.02 x 108

    0.025M

    [Mg2+]= 2.02 x 108

    [Mg2+][Mg2+] = 1.1 x 10-5M

  • 8/12/2019 1 Complexation Titration

    91/124

    OCH3

    OH

    +HN

    CO2-

    CO2-

    CH3

    NH

    +

    -O2C

    -O2C

    SO3-

    Xylenol Orange

    M-In + EDTA M-EDTA + In

    ' '

    M-In+ EDTA M-EDTA + In

    OH

    -

    O3S

    O2N

    N N

    OH

    Eriochrome black T

    pK1=6.3

    pK1=11.6

    +Zn2 EDTA

  • 8/12/2019 1 Complexation Titration

    92/124

    EDTA 0.01M

    Zn-EDTA

    n(EDTA)=n(Zn2+)

    Erio T

    EDTA 0.01M

    Zn2+, 20ml

    Buffer pH=10

    Erio T-Zn

    Zn2+ + EDTA Zn-EDTA

    +Ca2 EDTA

  • 8/12/2019 1 Complexation Titration

    93/124

    Ca2+ + EDTA Ca-EDTA

    (x mole)Ca

    2+

    +(y mole)

    EDTA-Mg

    (y mole)Ca-EDTA+ (y mole)Mg2++ (x-ymole)Ca2+

    x mole> y mole

    K(EDTA-Mg)= 4.9 x 108

    K(EDTA-Ca)= 5.0 x 1010

    EDTA

    (y mole)Ca-EDTA+ (y mole)Mg-EDTA+ (x-ymole)Ca-EDTA

    mole EDTA= C x V =(y mole)+(x-ymole)= x mole

    Mg-EDTA

  • 8/12/2019 1 Complexation Titration

    94/124

    1:1 Mg:EDTA

    EDTA+Mg2 +Mg2EDTA

    g

    +Ca2 EDTA C 2 M EDTA EDTA C EDTA C EDTA M EDTA

  • 8/12/2019 1 Complexation Titration

    95/124

    EDTA 0.01M

    Ca-EDTA, Mg-EDTA

    n(EDTA)=n(Ca2+)

    Erio T

    EDTA 0.01M

    Ca2+, 20ml

    ~1ml Mg-EDTA

    Buffer pH=10

    Erio T-Ca

    Ca2+ + Mg-EDTA+EDTA Ca-EDTA+ Ca-EDTA+ Mg-EDTA

  • 8/12/2019 1 Complexation Titration

    96/124

  • 8/12/2019 1 Complexation Titration

    97/124

  • 8/12/2019 1 Complexation Titration

    98/124

  • 8/12/2019 1 Complexation Titration

    99/124

  • 8/12/2019 1 Complexation Titration

    100/124

  • 8/12/2019 1 Complexation Titration

    101/124

  • 8/12/2019 1 Complexation Titration

    102/124

  • 8/12/2019 1 Complexation Titration

    103/124

  • 8/12/2019 1 Complexation Titration

    104/124

    First

    2nd

  • 8/12/2019 1 Complexation Titration

    105/124

    3rd

  • 8/12/2019 1 Complexation Titration

    106/124

  • 8/12/2019 1 Complexation Titration

    107/124

  • 8/12/2019 1 Complexation Titration

    108/124

  • 8/12/2019 1 Complexation Titration

    109/124

  • 8/12/2019 1 Complexation Titration

    110/124

  • 8/12/2019 1 Complexation Titration

    111/124

  • 8/12/2019 1 Complexation Titration

    112/124

  • 8/12/2019 1 Complexation Titration

    113/124

  • 8/12/2019 1 Complexation Titration

    114/124

  • 8/12/2019 1 Complexation Titration

    115/124

  • 8/12/2019 1 Complexation Titration

    116/124

  • 8/12/2019 1 Complexation Titration

    117/124

  • 8/12/2019 1 Complexation Titration

    118/124

  • 8/12/2019 1 Complexation Titration

    119/124

  • 8/12/2019 1 Complexation Titration

    120/124

  • 8/12/2019 1 Complexation Titration

    121/124

  • 8/12/2019 1 Complexation Titration

    122/124

  • 8/12/2019 1 Complexation Titration

    123/124

  • 8/12/2019 1 Complexation Titration

    124/124