24
1 CNRS GDR « Feux » – Corte 6 th to 8 th June 2007 Polyurethane Foam Pyrolysis and Combustion in Cone Calorimeter – Analysis of released heat and gases Lucas BUSTAMANTE VALENCIA Directors: Eric GUILLAUME LNE division Comportement au Feu Thomas ROGAUME Laboratoire de Combustion et de Détonique, UPR 9028 CNRS

1 CNRS GDR « Feux » – Corte 6 th to 8 th June 2007 Polyurethane Foam Pyrolysis and Combustion in Cone Calorimeter – Analysis of released heat and gases

Embed Size (px)

Citation preview

1

CNRS GDR laquo Feux raquo ndash Corte6th to 8th June 2007

Polyurethane Foam Pyrolysis and Combustion in Cone Calorimeter ndash Analysis of released

heat and gases

Lucas BUSTAMANTE VALENCIA

Directors

Eric GUILLAUME LNE division Comportement au Feu

Thomas ROGAUME Laboratoire de Combustion et de Deacutetonique UPR 9028 CNRS

2

Cone Calorimeter

Line of Gas Data transmission

Gas Evacuation

Sampling line at 150 degC

FTIR

FTIR data

Oxygen CO and CO2 analyser

Cone Calorimeter data

Scheme of apparatus distribution

Camera

FIDPump

FID data and temperatures register

3

0)( HvSMLRQQQ rrcrfe

eQ

rrQ)( crfQ

vhSMLR

eQ

rrQ)( crfQ

vhSMLR

PF ldquoperfectrdquo heat exchange balance in thermally-stable conditions

4

Element Mean () Molar Mass (gmol)

Molar proportion (mol) Coefficients

C 6197 1201 516 100H 850 101 843 163O 2246 1600 140 027N 588 1401 042 008S lt 02 3206 Cl lt 10 ppm 3545

Total 9881 1862

HCNOHCOONOHC 080770920171 2220802706311 Density 2087 kgm3

PF chemical composition (elemental analyse)

Normalised mass evolution with time in non-flaming condition - 30 kWmsup2

0010203040506070809

1

0 200 400 600 800 1000 1200Time (s)

No

rma

lise

d m

as

s (

1)

5SMLR vs incident heat flux

Specific mass-loss rate

y = 02131x - 10087

R2 = 09869

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Incident Heat Flux (kWm2)

SM

LR

(g

sm

2 )

bQaHv

QQSMLR e

rre

Where Specific mass-loss rate (kgsmsup2 )Incident heat flux (kWmsup2)Reflected heat flux (kWmsup2)Vaporisation enthalpy (kJkg)

SMLR

eQ

rrQ

Hv

Hva

1

Hv

Qb rr

Specific mass-loss rate until 180 s

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180Time (s)

SM

LR

(g

sm

2 )

Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Vaporisation enthalpy (kJkg) 4692 2400

Reflected heat flux (kWmsup2) 473 16 - 19

6

TRP

CHFQ

t

e

ig

41

Where Ignition time (s)Incident heat flux (kWmsup2)Critical heat flux is also found in literature as (kWmsup2)Thermal Response Parameter (kWmiddots12msup2)

igt

eQ

CHF

crQ

TRP

Ignition time vs incident heat flux

Ignition time vs incident heat flux

SlopeTRP

14

4

interceptyTRPCHF

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

2

Cone Calorimeter

Line of Gas Data transmission

Gas Evacuation

Sampling line at 150 degC

FTIR

FTIR data

Oxygen CO and CO2 analyser

Cone Calorimeter data

Scheme of apparatus distribution

Camera

FIDPump

FID data and temperatures register

3

0)( HvSMLRQQQ rrcrfe

eQ

rrQ)( crfQ

vhSMLR

eQ

rrQ)( crfQ

vhSMLR

PF ldquoperfectrdquo heat exchange balance in thermally-stable conditions

4

Element Mean () Molar Mass (gmol)

Molar proportion (mol) Coefficients

C 6197 1201 516 100H 850 101 843 163O 2246 1600 140 027N 588 1401 042 008S lt 02 3206 Cl lt 10 ppm 3545

Total 9881 1862

HCNOHCOONOHC 080770920171 2220802706311 Density 2087 kgm3

PF chemical composition (elemental analyse)

Normalised mass evolution with time in non-flaming condition - 30 kWmsup2

0010203040506070809

1

0 200 400 600 800 1000 1200Time (s)

No

rma

lise

d m

as

s (

1)

5SMLR vs incident heat flux

Specific mass-loss rate

y = 02131x - 10087

R2 = 09869

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Incident Heat Flux (kWm2)

SM

LR

(g

sm

2 )

bQaHv

QQSMLR e

rre

Where Specific mass-loss rate (kgsmsup2 )Incident heat flux (kWmsup2)Reflected heat flux (kWmsup2)Vaporisation enthalpy (kJkg)

SMLR

eQ

rrQ

Hv

Hva

1

Hv

Qb rr

Specific mass-loss rate until 180 s

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180Time (s)

SM

LR

(g

sm

2 )

Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Vaporisation enthalpy (kJkg) 4692 2400

Reflected heat flux (kWmsup2) 473 16 - 19

6

TRP

CHFQ

t

e

ig

41

Where Ignition time (s)Incident heat flux (kWmsup2)Critical heat flux is also found in literature as (kWmsup2)Thermal Response Parameter (kWmiddots12msup2)

igt

eQ

CHF

crQ

TRP

Ignition time vs incident heat flux

Ignition time vs incident heat flux

SlopeTRP

14

4

interceptyTRPCHF

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

3

0)( HvSMLRQQQ rrcrfe

eQ

rrQ)( crfQ

vhSMLR

eQ

rrQ)( crfQ

vhSMLR

PF ldquoperfectrdquo heat exchange balance in thermally-stable conditions

4

Element Mean () Molar Mass (gmol)

Molar proportion (mol) Coefficients

C 6197 1201 516 100H 850 101 843 163O 2246 1600 140 027N 588 1401 042 008S lt 02 3206 Cl lt 10 ppm 3545

Total 9881 1862

HCNOHCOONOHC 080770920171 2220802706311 Density 2087 kgm3

PF chemical composition (elemental analyse)

Normalised mass evolution with time in non-flaming condition - 30 kWmsup2

0010203040506070809

1

0 200 400 600 800 1000 1200Time (s)

No

rma

lise

d m

as

s (

1)

5SMLR vs incident heat flux

Specific mass-loss rate

y = 02131x - 10087

R2 = 09869

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Incident Heat Flux (kWm2)

SM

LR

(g

sm

2 )

bQaHv

QQSMLR e

rre

Where Specific mass-loss rate (kgsmsup2 )Incident heat flux (kWmsup2)Reflected heat flux (kWmsup2)Vaporisation enthalpy (kJkg)

SMLR

eQ

rrQ

Hv

Hva

1

Hv

Qb rr

Specific mass-loss rate until 180 s

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180Time (s)

SM

LR

(g

sm

2 )

Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Vaporisation enthalpy (kJkg) 4692 2400

Reflected heat flux (kWmsup2) 473 16 - 19

6

TRP

CHFQ

t

e

ig

41

Where Ignition time (s)Incident heat flux (kWmsup2)Critical heat flux is also found in literature as (kWmsup2)Thermal Response Parameter (kWmiddots12msup2)

igt

eQ

CHF

crQ

TRP

Ignition time vs incident heat flux

Ignition time vs incident heat flux

SlopeTRP

14

4

interceptyTRPCHF

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

4

Element Mean () Molar Mass (gmol)

Molar proportion (mol) Coefficients

C 6197 1201 516 100H 850 101 843 163O 2246 1600 140 027N 588 1401 042 008S lt 02 3206 Cl lt 10 ppm 3545

Total 9881 1862

HCNOHCOONOHC 080770920171 2220802706311 Density 2087 kgm3

PF chemical composition (elemental analyse)

Normalised mass evolution with time in non-flaming condition - 30 kWmsup2

0010203040506070809

1

0 200 400 600 800 1000 1200Time (s)

No

rma

lise

d m

as

s (

1)

5SMLR vs incident heat flux

Specific mass-loss rate

y = 02131x - 10087

R2 = 09869

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Incident Heat Flux (kWm2)

SM

LR

(g

sm

2 )

bQaHv

QQSMLR e

rre

Where Specific mass-loss rate (kgsmsup2 )Incident heat flux (kWmsup2)Reflected heat flux (kWmsup2)Vaporisation enthalpy (kJkg)

SMLR

eQ

rrQ

Hv

Hva

1

Hv

Qb rr

Specific mass-loss rate until 180 s

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180Time (s)

SM

LR

(g

sm

2 )

Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Vaporisation enthalpy (kJkg) 4692 2400

Reflected heat flux (kWmsup2) 473 16 - 19

6

TRP

CHFQ

t

e

ig

41

Where Ignition time (s)Incident heat flux (kWmsup2)Critical heat flux is also found in literature as (kWmsup2)Thermal Response Parameter (kWmiddots12msup2)

igt

eQ

CHF

crQ

TRP

Ignition time vs incident heat flux

Ignition time vs incident heat flux

SlopeTRP

14

4

interceptyTRPCHF

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

5SMLR vs incident heat flux

Specific mass-loss rate

y = 02131x - 10087

R2 = 09869

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Incident Heat Flux (kWm2)

SM

LR

(g

sm

2 )

bQaHv

QQSMLR e

rre

Where Specific mass-loss rate (kgsmsup2 )Incident heat flux (kWmsup2)Reflected heat flux (kWmsup2)Vaporisation enthalpy (kJkg)

SMLR

eQ

rrQ

Hv

Hva

1

Hv

Qb rr

Specific mass-loss rate until 180 s

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180Time (s)

SM

LR

(g

sm

2 )

Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Vaporisation enthalpy (kJkg) 4692 2400

Reflected heat flux (kWmsup2) 473 16 - 19

6

TRP

CHFQ

t

e

ig

41

Where Ignition time (s)Incident heat flux (kWmsup2)Critical heat flux is also found in literature as (kWmsup2)Thermal Response Parameter (kWmiddots12msup2)

igt

eQ

CHF

crQ

TRP

Ignition time vs incident heat flux

Ignition time vs incident heat flux

SlopeTRP

14

4

interceptyTRPCHF

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

6

TRP

CHFQ

t

e

ig

41

Where Ignition time (s)Incident heat flux (kWmsup2)Critical heat flux is also found in literature as (kWmsup2)Thermal Response Parameter (kWmiddots12msup2)

igt

eQ

CHF

crQ

TRP

Ignition time vs incident heat flux

Ignition time vs incident heat flux

SlopeTRP

14

4

interceptyTRPCHF

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

7

44oigoigc TTTThCHF

Poig CTTTRP WhereThermal conductivity (kWm K)PF density (kgm3) Specific heat at constant pressure (kJkg K)

PC

Thermal Parameters

Wherehc Coefficient of convective transfer = 152 Wmsup2KTig Temperature of the surface at ignition

To Laboratory temperature = 2931 K Material emissivity = (09007) Stephan Boltzmann constant = 567x10-8Wm2 K4

Fire protection engineering ndash SFPE 2nd Ed (Data obtained in flammability Apparatus) Fire protection engineering ndash SFPE 2nd Ed

Parameter Calculated Literature

Thermal Response Parameter (kWs12m-2) 7523 55 - 221

Critical Heat Flux (kWm-2) ndash Experimental 900 13 - 40

Ignition Temperature (degC) 275 280

Thermal Inertia ρλCp (kJ2s-1m-4K-2) 009

y = 00146x - 00067

R2 = 09902

0

01

02

03

04

05

06

07

08

0 10 20 30 40 50 60Incident Heat Flux (kWm2)

tig-(

12)

0

10

20

30

40

50

60

70

80

90

100

Ign

itio

n t

ime

(s)

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

8

e

oO

o

c mXr

hHRR

1051)1(101

2

222

222

1

110

02

0

OCOO

COOCOO

XXX

XXXX

Where

Thornton factor = 131MJkgO2

Initial environment concentration of the species A (1)Environment oxygen mole fraction (1)Concentration of the species A at the time t (1)Exhaust duct volume flow (ls)

o

c

r

h

0AXaOX

2

AX

em

Heat Release Rate

y = 25911x + 24108

R2 = 0955

240

260

280

300

320

340

360

380

400

0 10 20 30 40 50 60Irradiance (kWm2)

HR

R (

kW

m2 )

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Time (s)

HR

R (

kW

m2 )

0

5

10

15

20

25

SM

LR

(g

sm

2 )

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

9

Source LNE data base

Temperature measurement

10 mm

30 mm

T2

T1 Aluminium

foil

Polyurethane foam

Thermocouples location - K type

MaterialDensity

(kg m-3)

Conductivity

(W m-1 K-1)

Polyurethane Foam 2087 004Polystyrene Foam 20 0042Rigid Phenolic Foam 50 005Rubber 1200 015Epoxy Resine 1200 0201Oak wood 825 0209PMMA 1190 021Polycarbonate 1200 023Polyesters 1500 04LD Polyethylene 960 046

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

10

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of sample

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 30 kWm2

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400Time (s)

Te

mp

era

ture

(degC

)

T1 30kWm2

T2 30kWm2

0

50

100

150

200

250

300

350

400

270 290 310 330 350Time (s)

Te

mp

era

ture

(degC

)

0

5

10

15

20

25

30

35

40

He

ati

ng

ra

te (

degCs

)

y = 37846Ln(x) + 1062

R2 = 09869

12

14

16

18

20

22

24

0 50 100 150 200 250 300 350

Temperature (degC)

Tim

e-l

ag

(s

)

Nonflaming condition

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

11

Heating rate of the Polyurethane Foam

Evolution of the internal temperature of the PF

Time-lag between the thermocouples for given temperatures

Temperature at a Heat Flux of 40 kWm2

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600Time (s)

Te

mp

era

ture

(degC

) T1 40kWm2

T2 40kWm2Flaming condition

0

100

200

300

400

500

600

700

800

900

35 45 55 65 75Time (s)

Te

mp

era

ture

(degC

)

-20

0

20

40

60

80

100

He

ati

ng

ra

te (

degCs

)

95

10

105

11

115

12

125

13

135

14

0 100 200 300 400 500 600 700

Temperature (degC)

Tim

e-l

ag

(s

)

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

12

Evolution of the internal temperature of the PF

Temperature at a Heat Flux of 35 kWm2

Nonflaming to flaming condition

0100200300400500600700800900

1000

300 350 400 450 500 550 600Time (s)

Te

mp

era

ture

(degC

)

T1 35kWm2

T2 35kWm2

Pyrolysis Combustion

The ignition temperature measured = 320 degC and 350 degC The LNE Fire Data Base (Data No 3329) = 280 degC

(We do not know which was the method for determinate it)

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

13

Analysed Chemical Compounds

FTIR = Fourier Transform Infrared Spectroscopy (FTIR)FID = Flame Ionisation Detector ND = Non Dispersive Analyser

3LoD10LoQ

Concentr (ppm)

lt LoDlt LoQlt LoDlt LoQlt LoQlt LoDlt LoQlt LoDlt LoDlt LoD

Gas name Formula LoD (ppm)

LoQ (ppm) Method

Carbon monoxide CO 118 393 FTIR - NDCarbon dioxide CO2

2264 7547 FTIR - NDNitric oxide NO 222 740 FTIRWater H2O ND ND FTIRTotal hydrocarbons 01 033 FIDSulphur dioxide SO2

112 373 FTIRAmmonia NH3

175 583 FTIRHydrogen chloride HCl 154 513 FTIRMethane CH4

475 1583 FTIRNitrous oxide N2O 053 177 FTIRNitrogen dioxide NO2

197 657 FTIREthylene C2H4

2113 7043 FTIRAcetylene C2H2

528 1760 FTIRHydrogen cyanide HCN 142 473 FTIRFormaldehyde HCHO ND ND FTIR

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

14

10 kWm2

CO2 release during PF combustion

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300Time (s)

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

30 kWm2 50 kWm2

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

15

10 kWm2

CO release during PF combustion

30 kWm2 50 kWm2

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

020406080

100120140160180

0 50 100 150 200 250 300Time (s)

CO

Co

nc

en

tra

tio

n (

pp

m)

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

16

10 kWm2

NO release during PF combustion

30 kWm2 50 kWm2

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

02468

1012141618202224

0 50 100 150 200 250 300Time (s)

NO

Co

nc

en

tra

tio

n (

pp

m)

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

17

10 kWm2

H2O release during PF combustion

30 kWm2 50 kWm2

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300

Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

c

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

0500

100015002000250030003500400045005000

0 50 100 150 200 250 300Time (s)

H2O

Co

nc

en

tra

tio

n (

pp

m)

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

18

CO2 CO H2O and NO yield

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

Yie

ld (

mg

g)

15171921232527293133

NO

yie

ld (

mg

g)

CO2 and H2O yield CO and NO yield

70009000

1100013000150001700019000210002300025000

0 10 20 30 40 50 60

Irradiance (kWm2)

CO

2 a

nd

H2O

yie

ld (

mg

g)

CO2

H2O

nb

ni

iibb

bmolbb xxx

m

VMWVtY

1

21 2

1

2

1 WhereYb Yield of the chemical gas b (mgg)Δt Time between data (s)V Volume flow in the cone calorimeter exhaust (lmin)MWb Molar mass of the gas b (gmol)Vmolb Molar volume of the gas b (lmol)m Mass of the PF sample (g)xbi Concentration of the gas b at the time i

NOOHCOCOONOHC 080820020980301 2220802706311

A laquo real raquo combustion equation for ventilated fires

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

19

THC release in nonflame condition at 30 kWm2

THC release during PF combustion

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

02468

1012141618

0 100 200 300 400 500Time (s)

TH

C c

on

ce

ntr

ati

on

(p

pm

)

THC release in flame condition at 30 kWm2

y = 77235Ln(x) - 12523

R2 = 08892

2468

10

12141618

0 10 20 30 40 50 60

Heat flux (kWm2)

TH

C Y

ield

(m

gg

)

THC release in flame in function of heat flux

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

20

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

Time (s)

CO

2 a

nd

H2O

(p

pm

)

0

50

100

150

200

250

300

350

CO

NO

an

d T

HC

(p

pm

) H

RR

(k

Wm

2)

H2O (ppm)CO2 (ppm)CO (ppm)NO (ppm)THC (ppm)HRR (kWmsup2)

Extinction

4

HRR and gases off during combustion at 30kWm2

1 2 3

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

21

Thank you

lucasbustamantelnefr

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

22

Background Slides

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

23

The instruments and the measurements

INSTRUMENT MEASUREMENT

Cone Calorimeter Thermal properties and fire behaviour of PF

Fourier Transform Infrared Spectroscopy (FTIR)

Chemical species leaked during pyrolysis and combustion

Exhaust gas temperature measurement

Exhaust gas temperature used for molar correction of gas-off

Inner Polyurethane Foam temperature

Measurement of the inner temperature of the foam during degradation

Flame Ionisation Detection (FID)

Total hydrocarbons production

Camera Evaluation of foam degradation

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit

24

Scheme of the PhD research work

Figure 1 scheacutema des eacutetudes agrave reacutealiser pendant la thegravese

Cocircne calorimegravetre (Etude de la physique de la deacutegradation) + FTIR

Four tubulaire (Etude de la cineacutetique de la deacutegradation) Deacutegradation thermique

Combustibles solides

LIFT

Paramegravetres cineacutetiques et modeacutelisation

Fournir agrave FDS les paramegravetres trouveacutes

Effectuer la simulation de la combustion

Comparaison avec lrsquoexpeacuterience Essais agrave grande eacutechelle

Echelle matiegravere

Echelle produit