1 Avo Theory1

Embed Size (px)

Citation preview

  • 7/23/2019 1 Avo Theory1

    1/64

    Theory 1-1

    PRACTICAL AVOPRACTICAL AVO

    Part 1 Rock Physics &Part 1 Rock Physics &

    Fluid Replacement odelin!Fluid Replacement odelin!

  • 7/23/2019 1 Avo Theory1

    2/64

    Theory 1-2

    Introduction

    AVOAVOstands "orAmplitude Variations with OffsetAmplitude Variations with Offset# orAmplitude VersusAmplitude VersusOffsetOffset$

    TheAVOAVOtechni%ue uses the amplitude ariations o" prestack seismic

    re"lections to predict reseroir "luid e""ects$

    In this course# 'e 'ill look atAVOAVOmodelin!# reconnaissance and

    inersion techni%ues$

    (e"ore discussin!AVOAVO# 'e 'ill hae a look at the essentials o" rock

    physics$

  • 7/23/2019 1 Avo Theory1

    3/64

    Theory 1-3

    (asic Rock Physics

    TheAVOAVOresponse is dependent on the properties o" P)'ae elocity *VVPP+#,)'ae elocity *VV,,+# and density *+ in a porous reseroir rock$ As sho'n

    -elo'# this inoles the matri. material# the porosity# and the "luids "illin!

    the pores/

  • 7/23/2019 1 Avo Theory1

    4/64

    Theory 1-4

    0ensity

    DensityDensitye""ects can -e modeled 'ith the "ollo'in! e%uation/

    )S1(S)1( whcwwmsat ++=

    .subscriptswater,nhydrocarbo

    matrix,saturated,w,sat,m,hc

    ,saturationwaterwS

    porosity,

    density,where:

    =

    =

    =

    =

    This is illustrated in the ne.t

    !raph$

  • 7/23/2019 1 Avo Theory1

    5/64

    Theory 1-5

  • 7/23/2019 1 Avo Theory1

    6/64

    Theory 1-6

    Velocity

    nlike density# 'hich is simply mass diided -y unit olume# velocityvelocityinoles the de"ormation o" a rock as a "unction o" time$ Let us "irst

    consider the 'ays in 'hich a s%uare o" rock can -e moed or de"ormed/

    (a) Contraction (b) Lengthening

    (c) Rotation (d) Translation

    (e) Shear

  • 7/23/2019 1 Avo Theory1

    7/64

    Theory 1-7

    ,tress and ,train

    In the preious slide# cases *a+# *-+# and *e+ are called strainsstrains# since therock chan!es its si2e or shape# -ut *c+ and *d+ are simply displacements$

    The "orces that create this chan!e are called stresses$ Let3s look at *a+

    and *e+ in more detail/

    For the compressivecompressivecase# takin!

    the ratio o" the t'o s%uares leads

    to a strain o" *

    u.4

    . 5

    uy4

    y+

    For the shearshearcase# takin!

    the ratio o" the t'o s%uares leads

    to a strain o" *

    u.4

    y 5

    uy4

    .+

  • 7/23/2019 1 Avo Theory1

    8/64

    Theory 1-8

    6ooke3s La'

    ,mall stresses and strains *the linear case+ are related -y Hookes LawHookes Law/

    cep=where: p= stress = force per unit area,

    c = an elastic constant,

    and: e = strain

    For a pure compressie stress 7case *a+8# the elastic constant is called

    the ulk modulusulk modulus# !!"

    For a pure shear stress 7case *e+8# the elastic constant is called the shearshear

    modulusmodulus# $

  • 7/23/2019 1 Avo Theory1

    9/64

    Theory 1-9

    The ,tress Tensor

    There are 9 possi-le stressesstresseson a cu-e o" rock# -ut only : areindependent# since/ p.y; py.# p.2; p2.# and py2; p2y$ This is sho'n -elo'#

    -oth mathematically and physically$

    =

    zzzyzx

    yzyyyx

    xzxyxx

    ppp

    ppp

    ppp

    p

  • 7/23/2019 1 Avo Theory1

    10/64

    Theory 1-10

    The ,train Tensor

    As 'ith stress# there are 9 possi-le strainsstrains on a cu-e o" rock# -ut only :are independent# since/ e.y; ey.# e.2; e2.# and ey2; e2y$ This is sho'n

    -elo' in mathematical "orm$

  • 7/23/2019 1 Avo Theory1

    11/64

    Theory 1-11

    The >enerali2ed ,tress),train

    Relation

    The !enerali2ed relationship -et'een stressstressand strainstrainin the "ull

    anisotropic elastic case inoles =1 components in the elastic moduluselastic modulus

    matri#matri## as sho'n -elo'$

  • 7/23/2019 1 Avo Theory1

    12/64

    Theory 1-12

    The Isotropic ,tress),train Relation

    For the isotropicisotropiccase# the situation is much simpler# inolin! only t'o

    uni%ue alues# 'hich are called the Lam$ parametersLam$ parameters and /

    +++

    =

    xy

    xz

    yz

    zz

    yy

    xx

    xy

    xz

    yz

    zz

    yy

    xx

    ee

    e

    e

    e

    e

    0000000000

    00000

    0002

    0002

    0002

    pp

    p

    p

    p

    p

  • 7/23/2019 1 Avo Theory1

    13/64

    Theory 1-13

    0eriin! the Velocities

    Trans"ormin! the static stress)strain relationship into the dynamic e""ectso" velocityvelocityinoles t'o steps/

    ) introducin! momentum ia %ewtons law%ewtons law/ & = ma

    ) introducin! density# since mass is the product o" density times

    olume$

    The deriation 'ill not -e done here# -ut the "inal "orm is the wavewave

    e'uatione'uation/

    2

    2

    22

    2

    2

    2

    2

    2

    tu

    V1

    zu

    yu

    xu =++

    : , , ,where V velocity a function of and =

  • 7/23/2019 1 Avo Theory1

    14/64

    Theory 1-14

    Velocity ?%uations usin! and

    6ere are the e%uations "or velocityvelocityderied in their most -asic "orm usin!the Lam$ coefficientsLam$ coefficients/

    2VP +=

    =sV

    : , the Lame parameters

    : density.

    where

    and

    =

    =

  • 7/23/2019 1 Avo Theory1

    15/64

    Theory 1-15

    Velocity ?%uations usin! @ and

    Another common 'ay o" 'ritin! the velocityvelocitye%uations is 'ith ulkulkandshear modulusshear modulus/

    3

    !

    VP

    +

    =

    =sV

    nd

    : the b!" mod!s,

    23

    the shear mod!s

    #2 Lame parameter

    where K

    and

    =

    = +

    =

  • 7/23/2019 1 Avo Theory1

    16/64

    Theory 1-16

    Poisson3s Ratio

    A common 'ay o" lookin! at the ratio o" V(to V) is to use (oissons ratio(oissons ratio#de"ined as/

    22

    2

    =

    2

    S

    P

    V

    V:where

    =

    The inerse to the a-oe "ormula# allo'in! you to derie V(or V)"rom# is !ien -y/

    12

    22

    =

  • 7/23/2019 1 Avo Theory1

    17/64

    Theory 1-17

    There are seeral alues o" (oissons ratio(oissons ratioand V(*V)

    ratio that should -e noted/

    A plot o" (oissons ratio(oissons ratioersus velocity ratiovelocity ratiois sho'n on the ne.t

    slide$

    I" V(*V)= +# then =

    I" V(*V)= -".# then = "-*/as 0ase/as 0ase+

    I" V(*V)= +# then = -*1*2et 0ase2et 0ase+

    I" V(*V

    )= # then = ".*VV

    ,,= = +

    Poisson3s Ratio

  • 7/23/2019 1 Avo Theory1

    18/64

    Theory 1-18

    Vp4Vs s Poissons Ratio

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 1 2 3 4 5 6 ! " 10

    Vp4Vs

    PoissonAs

    Ratio

    >as Case Bet Case

  • 7/23/2019 1 Avo Theory1

    19/64

    Theory 1-19

    Velocity in Porous Rocks

    VelocityVelocitye""ects can -e modeled -y the -ulk aera!e e%uation as seen-elo' and in the ne.t "i!ure/

    )S1(tSt)1(tt whcwwma ++=

    1$where : t V =

    n"ortunately# the a-oe e%uation does not hold "or !as sands# and

    this lead to the deelopment o" other e%uations$

  • 7/23/2019 1 Avo Theory1

    20/64

    Theory 1-20

    Velocity s ,' 'ith Volume A!$ ?%$

    Por ; D# Voil ; 1EE m4s# V!as ; EE m4s

    1000

    1500

    2000

    2500

    3000

    3500

    0 0.1 0.2 0.3 0.4 0.5 0.6 0. 0.! 0." 1

    Bater ,aturation

    Velocity*

    m4sec+

    #il $as

  • 7/23/2019 1 Avo Theory1

    21/64

    Theory 1-21

    Other empirical e%uations hae -een proposed/

    "#m

    2

    P VV)1(V +=

    6o'eer# the -est "it to o-seration has -een o-tained 'ith the 3iot43iot4

    /assmann e'uations/assmann e'uations$

    $1%.2&3.'&.)s*m(VP = $%&.1&1.2.3)s*m(VS =

    +aymer et a#.

    -an et a#, where: $ Vo#ume $#ay $ontent

  • 7/23/2019 1 Avo Theory1

    22/64

    Theory 1-22

    The (iot)>assmann ?%uations

    Independently# /assmann/assmann*191+ and 3iot3iot*19:+# deeloped the theory o"'ae propa!ation in "luid saturated rocks# -y deriin! e.pressions "or the

    saturated -ulk and shear modulii# and su-stitutin! into the re!ular

    e%uations "or P) and ,)'ae elocity/

    sat

    satsat

    P3

    !

    V

    += sat

    satsV

    =

  • 7/23/2019 1 Avo Theory1

    23/64

    Theory 1-23

    (iot)>assmann ) ,hear odulus

    In the 3iot4/assmann3iot4/assmanne%uations# the shear modulusshear modulusdoes not chan!e "oraryin! saturation at constant porosity/

    drysat =

    shear mod!s o% satrated ro&"

    shear mod!s o% dry ro&"

    where :sat

    dry

    =

    =

  • 7/23/2019 1 Avo Theory1

    24/64

    Theory 1-24

    (iot)>assmann ) ,aturated (ulk odulus

    The 3iot4/assmann ulk modulus e'uation3iot4/assmann ulk modulus e'uationis as "ollo's/

    2

    m

    dry

    m"#

    2

    m

    dry

    drysat

    !

    !

    !

    1

    !

    )!

    !1(

    !!

    +

    +=

    ako et al# in 5he 6ock (hysics Handook5he 6ock (hysics Handook, re)arran!ed the a-oe

    e%uation to !ie a more intuitie "orm/

    )!!(

    !

    !!

    !

    !!

    !

    "#m

    "#

    drym

    dry

    satm

    sat

    +

    =

    2here sat = saturated rock, dry = dry frame, m = rock matri#, fl = fluid,

    and

    = porosity"

    (1)

    (2)

  • 7/23/2019 1 Avo Theory1

    25/64

    Theory 1-25

    The )aturated 3ulk 7odulus)aturated 3ulk 7odulus*@sat+ is a""ected -y/

    Rock "rame -ulk modulus *@dry+

    Porosity

    Fluid -ulk modulus *@"l+

    ) ,aturation

    ) Temperature

    ) Pore Pressure

    ?""ectie Pressure

    ) Oer-urden Pore pressure

    ineral -ulk modulus

  • 7/23/2019 1 Avo Theory1

    26/64

    Theory 1-26

    (iot)>assmann ) ,hear (ulk odulus

    & 0ensity)aturated )hear 7odulus)aturated )hear 7odulus*sat+

    Is ?%ual to Rock "rame shear modulus *dry+

    Porosity

    ?""ectie Pressure

    Oer-urden Pore pressure

    )aturated Density)aturated Density*sat+ depends on

    Rock matri. density *m+

    PorosityFluid density

    ) ,aturation

    ) Temperature

    ) Pore Pressure

  • 7/23/2019 1 Avo Theory1

    27/64

    Theory 1-27

    The Rock atri. (ulk odulus

    The -ulk modulus o" the solid rock matri.# !mis usually taken "rom

    pu-lished data that inoled measurements on drill core samples$

    Typical alues are/

    !sandstone / 0Pa,

    !limestone '/ 0Pa.

    Be 'ill no' look at ho' to !et estimates o" the arious -ulk modulus

    terms in the 3iot4/assmann3iot4/assmann e%uations# startin! 'ith the -ulk modulus

    o" the solid rock matri.$ Values 'ill -e !ien in 8i8a(ascals8i8a(ascals9/(a9/(a#

    'hich are e%uialent to ----dynes*cmdynes*cm++$

  • 7/23/2019 1 Avo Theory1

    28/64

    Theory 1-28

    The Fluid (ulk odulus

    The fluid ulk modulusfluid ulk moduluscan -e modeled usin! the "ollo'in! e%uation/

    hc

    w

    w

    w

    fl K

    1

    K

    K

    1 +=

    b!" mod!s o% 'ater

    b!" mod!s o% hydro&arbon.

    where : K !w

    Khc

    =

    =

    ?%uations "or estimatin! the alues o" -rine# !as# and oil -ulk modulii

    are !ien in (at2le and Ban!# 199=# )eismic (roperties of (ore &luids)eismic (roperties of (ore &luids#>eophysics# G# 19:)1HE$ Typical alues are/

    !8as /./21 0Pa, !oil /.& 0Pa, !w 2.3% 0Pa

  • 7/23/2019 1 Avo Theory1

    29/64

    Theory 1-29

    ?stimatin! @dry

    For kno'n V(# -ut unkno'nV)# !drycan -e estimated *>re!ory# 19GG+ -y

    assumin! the dry rock (oissons ratio(oissons ratiodry$ >re!ory sho's that e%uation

    *1+ can -e re'ritten as/

    For kno'n V) and V(, !drycan -e calculated -y "irst calculatin! !sat

    and then usin! 7avkos e'uation7avkos e'uation$

    2

    m

    dry

    m"#

    2

    m

    dry

    drysat

    !

    !

    !

    1

    !

    )!

    !1(

    +

    +=

    )1(

    )1(3S:and

    ,S!3!

    ,3!:where

    dry

    dry

    drydrydry

    satsat

    +

    =

    =+=

    +=

  • 7/23/2019 1 Avo Theory1

    30/64

    Theory 1-30

    A"ter a lot o" al!e-ra# the preious e%uation can -e 'ritten as the"ollo'in! %uadratic e%uation "or a term that inoles !dry$ ,olin! "or

    !ies the solution$

    0"a 2 =++

    =

    +

    =

    =

    ==

    1K

    K

    K

    #c

    K#1

    KK"

    !1a

    !K

    K1tcoefficien%iotthe:where

    fl

    &

    &

    sat

    &

    sat

    fl

    &

    &

    dry

    ?stimatin! @dry

  • 7/23/2019 1 Avo Theory1

    31/64

    Theory 1-31

    Porosity Chan!e

    Porosity a""ects the dry rock -ulk modulus# and this e""ect can -ecomputed -y usin! the "ollo'in! e%uation/

    &dry' K

    1

    K

    1

    K=

    where: !(= pore ulk modulus

    I" 'e assume that the pore -ulk modulus stays constant "or a ran!e o"

    porosities# -ut the dry rock -ulk modulus chan!es as a "unction o"

    porosity# 'e can compute a ne' dry rock -ulk modulus "or a di""erent

    porosity usin! the "ollo'in! re)arran!ed ersion o" the a-oe e%uation/

    &'

    new

    new(dry K

    1

    KK

    1+=

  • 7/23/2019 1 Avo Theory1

    32/64

    Theory 1-32

    0ata ?.amples

    In the ne.t "e' slides# 'e 'ill look at the computed responses "or -oth a!as)saturated sand and an oil)saturated sand usin! the 3iot4/assmann3iot4/assmann

    e'uatione'uation$

    Be 'ill look at the e""ect o" saturation on -oth elocity *V(and V)+ and

    (oissons 6atio(oissons 6atio$

    @eep in mind that this model assumes that the !as is uni"ormly

    distri-uted in the "luid$ Patchy saturation proides a di""erent "unction$

    *,ee ako et al/ 5he 6ock (hysics Handook5he 6ock (hysics Handook$+

  • 7/23/2019 1 Avo Theory1

    33/64

    Theory 1-33

    Velocity s ,' ) >as Case# Por ; D

    @s ; HE# @!as ; $E=1# @dry ; $=# u ; $ >Pa

    1000

    1200

    1400

    16001!00

    2000

    2200

    2400

    2600

    0 0.1 0.2 0.3 0.4 0.5 0.6 0. 0.! 0." 1

    ,'

    Velocit

    y*m4s+

    %& %s

  • 7/23/2019 1 Avo Theory1

    34/64

    Theory 1-34

    PoissonAs Ratio &s Bater ,aturation

    >as Case

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5 0.6 0. 0.! 0." 1

    ,'

    PoissonAsRatio

    'oissons Ratio

  • 7/23/2019 1 Avo Theory1

    35/64

    Theory 1-35

    0 2 4

    **CT #* +,TR S,TR,T#/

    '-+,% %L#CT (sec)

    '#SS#/SR,T#

    $as Sand ( 'hi 33 )0.5

    0.4

    0.3

    0.2

    0.1

    0

    0505

    "0

    "4

    "6

    "!

    ""

    100

    Another 'ay o" displayin! the data is on a t'o parameter

    plot$ 6ere# (oissons ratio(oissons ratiois plotted a!ainst P)'ae elocity$

  • 7/23/2019 1 Avo Theory1

    36/64

    Theory 1-36

    Velocity &s ,' ) Oil Case

    Porosity ; D# @oil ; 1$E Pa

    1000

    1500

    2000

    2500

    3000

    0 0.1 0.2 0.3 0.4 0.5 0.6 0. 0.! 0." 1

    ,'

    Velocity*m4s+

    %s %&

  • 7/23/2019 1 Avo Theory1

    37/64

    Theory 1-37

    Poissons Ratio s Bater ,aturation

    Oil Case

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.1 0.2 0.3 0.4 0.5 0.6 0. 0.! 0." 1

    ,'

    PoissonAsRatio

    'oissons Ratio

  • 7/23/2019 1 Avo Theory1

    38/64

    Theory 1-38

    ' VV

    12

    22

    =

    This 'ill -e illustrated in the ne.t "e'

    slides$

    The udrock Line

    The mudrock linemudrock lineis a linear relationship -et'een V(and V)deried -y Casta!na et al *19+/

  • 7/23/2019 1 Avo Theory1

    39/64

    Theory 1-39

    A60Os ori8inal mudrock derivationA60Os ori8inal mudrock derivation

    *Casta!na et al# >eophysics# 19+

  • 7/23/2019 1 Avo Theory1

    40/64

    Theory 1-40

    The udrock Line

    0

    2000

    2000

    4000

    6000

    1000 3000 40000

    1000

    3000

    5000

    VP *m4s+

    V,*m4s+

    udrock Line

    >as ,and

    Th d k Li

  • 7/23/2019 1 Avo Theory1

    41/64

    Theory 1-41

    The udrock Line

    0

    2000

    2000

    4000

    6000

    1000 3000 40000

    1000

    3000

    5000

    VP *m4s+

    V,*m4s+

    udrock Line

    >as ,and

    ; 14

    or

    VP4V,; =

  • 7/23/2019 1 Avo Theory1

    42/64

    Theory 1-42

    The udrock Line

    0

    2000

    2000

    4000

    6000

    1000 3000 40000

    1000

    3000

    5000

    VP *m4s+

    V,

    *m4s+

    udrock Line

    >as ,and

    ; 14

    or

    VP4V,; =

    ; E$1 or

    VP4V,; 1$

  • 7/23/2019 1 Avo Theory1

    43/64

    Theory 1-43

    Finally# here is a display o" the udrock line and the dry

    rock line on a (oissons ratio versus (4wave velocity(oissons ratio versus (4wave velocity plot$

  • 7/23/2019 1 Avo Theory1

    44/64

    Theory 1-44

    Tips "or sin! o" >assmann3s

    ?%uation@m/ ineral Term

    JTe.t -ookK alues hae -een measured on pure mineralsamples *crystals+$

    ineral alues can -e aera!ed usin! Reuss aera!in! to

    estimate @m"or rocks composed o" mi.ed litholo!ies$

    @dry/ Rock Frame

    Represents the incompressi-ility o" the rock "rame *includin!

    cracks and pores+$O"ten pressure dependent due to cracks closin! 'ith increasede""ectie pressure$

    0i""icult to o-tain accurate alues in many cases$

    La-oratory measurements o" representatie core plu!s underreseroir pressure may -e the -est source o" data$

  • 7/23/2019 1 Avo Theory1

    45/64

    Theory 1-45

    CATIO

  • 7/23/2019 1 Avo Theory1

    46/64

    Theory 1-46

    Fluid Replacement odelin! *FR+

    ?stimates VP# V,and density chan!es that occur 'hen saturationchan!es$

    FR re%uires/

    Top and -ottom depth o" the reseroir

    P 'ae elocity lo!

    Porosity and4or density in"ormation

    ,hear 'ae elocity in"ormation *lo! or estimate+

    ,aturation in"ormation *consistent 'ith input 'ell lo!s+

    Rock matri. in"ormation *"rom mineral ta-les+

    Fluid properties *From ()B "luid calculator+

  • 7/23/2019 1 Avo Theory1

    47/64

    Theory 1-47

    FR operates on the lo! data on a sample -y sample -asis$

    Areas 'ith lo' porosity# or hi!h shale content should -e e.cluded usin!

    !amma ray# density or porosity cut)o""s

    0ensity and porosity in"ormation are re%uired$ This in"ormation must -e

    consistent$

    FR can accept/

    ) 0ensity lo! 'ith saturation data# matri. and "luid densities *porosity

    is calculated+

    ) Porosity lo! 'ith saturation data# matri. and "luid densities *density

    lo! is calculated+) 0ensity and porosity lo!s 'ith saturation data and "luid densities

    *matri. densities are calculated+

    FR can -e sensitie to poor %uality or inconsistent lo! data$

    Input P 'ae and 0ensity In"ormation/

  • 7/23/2019 1 Avo Theory1

    48/64

    Theory 1-48

    ,hear 'ae in"ormation is re%uired to calculate @dry"rom the saturated P'ae lo! in"ormation$

    ,hear 'ae in"ormation can come "rom/

    0ipole ,hear 'ae sonic lo!s

    ?stimated ,)'ae elocity lo!s usin! the ARCO mudrock line0ry rock Poisson3s ratio *try alues "rom $1= to $= "or sandstones+

    The udrock line underestimates , 'ae elocities in unconsolidated#

    hi!hly porous sands$ This may result in incorrect estimates o" the dry

    rock Poisson3s ratio and @dry$

    In that case# su!!est/ replace the estimated , 'ae elocities "or these

    sands in a synthetic , 'ae lo! 'ith a VP4V,o" =$E$

    ,hear Bae In"ormation/

  • 7/23/2019 1 Avo Theory1

    49/64

    Theory 1-49

    Bater saturation "or the initial reseroir conditions may -e proided as aconstant alue or as a lo!$

    ,aturation in"ormation must a!ree 'ith the recorded sonic lo! and

    density alues$

    The sonic tool measures the "astest trael path "rom source to receier$In many cases# the sonic elocity represents the "lushed 'ell -ore

    annulus rather than the hydrocar-on saturation "ormation$

    Petrophysicists can proide 'ater saturation lo!s that represent the

    conditions o" the inaded re!ion$

    Flushed re!ions o"ten e.hi-it patchy saturation$

    Bater ,aturation In"ormation/

  • 7/23/2019 1 Avo Theory1

    50/64

    Theory 1-50

  • 7/23/2019 1 Avo Theory1

    51/64

    Theory 1-51

    =+ Calculate input P 'ae modulus/

    4

    3

    & & K = +

    ( ) += 1&"rwet

    0etailed ,teps Assumin! Casta!na3s ?%uation "or

    Bet ,ands/

    1+ Calculate density "or 1EED -rine saturation/

    2

    '# V = + Calculate matri. P 'ae modulus/

  • 7/23/2019 1 Avo Theory1

    52/64

    Theory 1-52

    :+ Calculate V,'et"rom VP'et

    () * ( ) *

    fl "r

    & & fl & "r

    # K K

    d # # # K # K = +

    (1

    &wet

    ## d

    d=

    +

    wet

    wet'

    wet

    #V

    =

    ( wet

    wet V V

    =

    H+ AdMust P 'ae modulus to 1EED 'ater/

    + Calculate VP'et

    G+ Calculate V,input"rom V,'et

    'wet c wet cV ) V %= +

  • 7/23/2019 1 Avo Theory1

    53/64

    Theory 1-53

    1E+ Calculate @sat'ith ne' "luid/

    2

    ( +V =

    2 4

    ( (3'

    K V =

    ( ) *

    fl

    & & fl

    K Ka

    K K K K=

    (1

    dry &a

    K Ka

    =+

    () *

    out out dry fl

    out out out & dry & fl

    K Ka

    K K K K= +

    (

    1

    out&

    aK K

    a

    =

    +

    + Calculate @ and m "rom input data/

    9+ O-tain @dry/

  • 7/23/2019 1 Avo Theory1

    54/64

    Theory 1-54

    11+ >et ne' density/

    ( ( )1 *out out out out fl & = +

    4

    3 +

    out out

    out'

    out

    K

    V

    +

    =

    outout

    out

    V

    =

    1=+ Finally the ne' elocitiesN

  • 7/23/2019 1 Avo Theory1

    55/64

    Theory 1-55

    uality Control o" the FR Result

    Check dry rock Poisson3s ratio o" "irst sample on last FR panel$

    se C plot option on FR "inal panel to produce displays$

    0isplay error lo! to check "or reported pro-lems$

    0ry rock Poisson3s ratio should -e/

    Ran!e ean

    Clastics E$E to E$=

    Limestones E$= to E$ E$1

    0olomites E$1: to E$= E$=G

    0ry rock -ulk modulus should -e/

    Ran!e ean

    Clastics = to =E

    Limestones = to :E

    0olomites = to :E H

  • 7/23/2019 1 Avo Theory1

    56/64

    Theory 1-56

    Bhen pro-lems occur# check "or the "ollo'in!/

  • 7/23/2019 1 Avo Theory1

    57/64

    Theory 1-57

    Bhen multiple pore "luids are present# @"lis usually calculated-y a Reuss aera!in! techni%ue/

    Kfl vs Sw and Sg

    E

    E$

    1

    1$=

    =$

    E E$= E$ E$G 1

    Water saturation (fraction)

    Bulkmodulus(Gpa)

    5his avera8in8

    techni'ue assumes

    uniform fluiddistriution;

    4/as and li'uid must

    e evenly distriuted

    in every pore"

    1 *w o

    fl w o *

    K K K K= + +

    This method heaily -iases compressi-ility o" the com-ined

    "luid to the most compressi-le phase$

    The JFi22 BaterK Issue

  • 7/23/2019 1 Avo Theory1

    58/64

    Theory 1-58

    Bhen "luids are not uni"ormly mi.ed# e""ectie modulus alues cannot-e estimated "rom Reuss aera!in!$

  • 7/23/2019 1 Avo Theory1

    59/64

    Theory 1-59

    Bhen patch si2es are lar!e# 'ith respect to the seismic 'aelen!th#Voi!t aera!in! !ies the -est estimate o" @"l*0omenico# 19G:+$

    fl w w o o * *K K K K= + +Bhen patch si2es are o" intermediate si2e# >assmann su-stitution

    should -e per"ormed "or each patch area and a olume aera!e

    should -e made *0orkin et al# 1999+$

    This can -e appro.imated -y usin! a po'er)la' aera!in! techni%ue

    *(rie et al# 199+/

    Patchy ,aturation/

    ( ) *

    e

    w*wfl KKKK +=

  • 7/23/2019 1 Avo Theory1

    60/64

    Theory 1-60

    Patchy ,aturation/

    >assmann predicted elocities

    nconsolidated sand matri.

    Porosity ; ED

    1EED >as to 1EED (rine saturation

    1.5

    1.7

    1.

    !.1

    !."

    !.5

    # #.!5 #.5 #.75 1

    Water Saturation (fraction)

    $p(km%s)

    &atc'

    $oigt

    euss

  • 7/23/2019 1 Avo Theory1

    61/64

    Theory 1-61

    Accordin! to a paper -y 6an and (at2le# The Leadin!

    ?d!e# April# =EE=/

    the JFi22 BaterK e""ect is !reatly dependent on the pressure o" the

    "ormation$

  • 7/23/2019 1 Avo Theory1

    62/64

    Theory 1-62

  • 7/23/2019 1 Avo Theory1

    63/64

    Theory 1-63

  • 7/23/2019 1 Avo Theory1

    64/64

    Conclusions

    An understandin! o" rock physics is crucial "or the interpretation o"AVOAVOanomalies$

    The olume aera!e e%uation can -e used to model density in a 'ater

    sand# -ut this e%uation does not match o-serations "or elocities in

    a !as sand$

    The3iot4/assmann3iot4/assmanne%uations match o-serations 'ell "or

    unconsolidated !as sands$

    Bhen dealin! 'ith more comple. porous media 'ith patchysaturation# or "racture type porosity *e$!$ car-onates+# the 3iot43iot4

    /assmann/assmanne%uations do not hold$

    TheA60O mudrock lineA60O mudrock lineis a !ood empirical tool "or the 'et sands

    and shales