42
1 1961 – 1968 IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983 IBR-2 (100 – 1000 kW) 1984 – 2004 IBR-2 (1500 – 2000 kW) ti t research. 20 years of regular studies at the IBR-2 pulsed reactor. Anatoly M. Balagurov Condensed Matter Department of Frank Laboratory of Neutron Physics, JINR

1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

Embed Size (px)

Citation preview

Page 1: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

1

1961 – 1968 IBR-1 (1 – 6 kW)

1969 – 1980 IBR-30 (15 kW)

1981 – 1983 IBR-2 (100 – 1000 kW)

1984 – 2004 IBR-2 (1500 – 2000 kW)

tit

Neutron scattering in condensed matter research.

20 years of regular studies at the IBR-2 pulsed reactor.

Anatoly M. BalagurovCondensed Matter Department of Frank Laboratory of Neutron Physics, JINR

Page 2: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

21st-sp

Diffraction TOF patterns: in the past and at present.

Si diffraction pattern, measured at the IBR-1. 1965.

Si diffraction pattern, measured at the IBR-2. 1994.

Page 3: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

3Tem

Time-of-Flight (TOF) technique at pulsed neutron source

Alternatives:

Steady state source (reactor) W = 10 – 100 MW, const in time.

Pulsed source (reactor / accelerator) W = 10 – 2000 kW, pulses in time.

These two types are generally considered to be complimentary!

At pulsed neutron source TOF technique is used in a natural way!

Neutrons are separated in energy after traveling over a fixed path (L), permitting neutrons of many different energies and wavelengths to be used for experiments.

Fli

ght

pat

h

Source pulse Time

Low energyHigh energy

Page 4: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

4IBR-2

Activecore

IBR-2 pulsed reactor (1984 – present)

The IBR-2 parameters

Fuel PuO2

Active core volume 22 l

Cooling liquid Na

Average power 2 МW

Pulsed power 1500 MW

Repetition rate 5 s-1

Average flux 8·1012 n/cm2/s

Pulsed flux 5·1015 n/сm2/s

Pulse width (fast / therm.) 215 / 320 μs

Number of channels 14

Movable reflector

Page 5: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

5Diffr.-IBR2

The IBR-2 pulsed reactor for condensed matter research.Comparison with other pulsed sources.

Source

Parameter

IBR-30

JINR

IBR-2

JINR

ISIS

RAL, UK

SNS

ORNL, USA

Status 1969-80 1984 1986 2006

Power,

kW15 2000 160 1200

Pulse width,

μs120 320 20 20

Frequency,

s-15 5 50 60

Page 6: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

6Diffr.-IBR2

The IBR-2 pulsed reactor for condensed matter research.Comparison with other pulsed sources.

Intensity / Counting rate

I ≈ Φ0 · S · Ω/4π [n/s] ≥ 106 n/s

DN-2, IBR-2: Ω ≈ 0.2 sr

GEM, ISIS: Ω ≈ 6.0 sr

Φ0 – neutron flux at a sample, 107 n/cm2/s

S – sample area, 5 cm2

Ω – detector solid angle, 0.2 sr

Page 7: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

7Diffr.-IBR2

The IBR-2 pulsed reactor for condensed matter research.Comparison with other pulsed sources.

R = [(Δt0/t)2 + (Δ/tg)2]1/2

Resolution

Δt0 – pulse width,

Δ - geometrical uncertainties,

t ~ L · λ – total flight time,

– Bragg angle.

IBR-2: Δt0 ≈ 320 μs.

ISIS: Δt0 ≈ 20 μs.

TOF component in resolution function is not very important for:

SANS, reflectometry, single crystal diffraction, magnetic diffraction…

For high resolution experiment we use the Fourier technique !

R ≈ 0.01, DN-2.

R ≈ 0.003, GEM.

Page 8: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

8chopper

High Resolution Fourier Diffractometer

0.7 mm

Rotor

Stator

Transmission function

Binary signals

Fourier chopper:N=1024

Vmax=9000 rpm

Ω = 150,000 s-1

Sbeam=3x30 cm2

0

R(t) R(t) ≈ g(ω)cos(ωt)dω,

Δt0≈ 1/Ω = (Nωm)-1 ≈ 7 μs

Page 9: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

9HRFD

HRFD – High Resolution Fourier Diffractometer

at the IBR-2 pulsed reactor

In collaboration between: FLNP (Dubna), PNPI (Gatchina), VTT (Espoo), IzfP (Drezden)

IBR-2

Fourierchopper

Page 10: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

10high-low

0 .7 1 .0 1 .3 1 .6 1 .9 2 .2 2 .5d , Å

Y 1 2 3 -C u /F eH ig h reso lu tio n0 .1 %

Y 1 2 3 -C u /F eL o w reso lu tio n1 %

cufe-h l

Diffraction patterns measured with high and low resolution

HRFDd/d0.001

DN-2d/d0.01

Page 11: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

11HRPD-HRFD

Al2O3 standard measured at ISIS and IBR-2

For V=11,000 rpm & L=30 m

Rt=0.0002 (d=2 Å)

The utmost TOF resolution of HRFD

Page 12: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

121st-sp

Diffraction TOF experiments with sapphire anvil high-

pressure cells (collaboration with “Kurchatov

Institute”)

Diffractometer DN-12 at the IBR-2

Sapphire anvil high-pressure high-pressure cell, Р up to 7 GPa (cylinder48 mm x 164 mm height).

Page 13: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

13Mono-DKDP

2D cross-section of (400) spot of KD2PO4 single crystalmeasured by 1D PSD at T=80 K.

А.M. Balagurov, I.D. Dutt, B.N. Savenko and L.A. Shuvalov, 1980.

Simultaneous sweep

along TOF and 2 axes.

About 4000 points have

been measured in parallel.

TOF scale

2 scale

Page 14: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

14real-time

Time / temperature scale: Tstart=94 K, Tend=275 K. The heating rate is ≈1 deg/min.

Diffraction patterns have been measured each 5 min. Phase VIII is transformed into high density amorphous phase hda, then into cubic phase Ic, and then into hexagonal ice Ih.

Ice VIII

Ic

Ih

Phase transformations of high pressure heavy ice VIII.Time-resolved experiment with t=5 min.

hda

TOF scale

Time & temperature scale

Page 15: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

15spn

V. Lauter-Pasyuk, H. Lauter, B. Toperverg et al., 1999.

Magnetic off-specular neutron scattering from (001)

[Cr(12Å)/57Fe(68Å)]x12 /Al2O3 multilayer

Intensity map of specular and off-specular scattered neutrons from the Fe/Cr multilayer (SPN data).

Result of the supermatrix calculations with the model of non-collinear domains.

Neutron wavelength, Å Neutron wavelength, Å

Page 16: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

16prem

Development and realization of new methods

in time-of-flight neutron diffraction studies

at pulsed and steady state nuclear reactors

State Prize of the Russian Federation in 2000

FLNP, JINRVictor L. Aksenov

Anatoly M. Balagurov

Vladimir V. Nietz

Yuri M. Ostanevich

RRC KI, MoscowVictor P. Glazkov

Victor A. Somenkov

PNPI RAS, GatchinaValery A. Kudryashev

Vitaly A. Trounov

Page 17: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

17

Condensed Matter Department at FLNP

tit

Permanent staff 45Directorate staff 22Ph.D. + students 13

Doctor of science 7

Candidate of science 26

Main goals: Research at the actual fields of condensed matter science and technology. Assistance to external users at the IBR-2 spectrometers. Operation of spectrometers at the IBR-2 and their further development.

10

14

8

4

9 9

7

10

6

3

0

2

4

6

8

10

12

14

16

18

20

20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-70

Age distributionA new goal: Realization of education program

for young scientists.

Page 18: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

18IBR-2

Spectrometers at the IBR-2 reactor

HRFDDN-2TEST

SKATEPSILONNERA

DN-12FSDIZOMER (NP)

YuMO DIN

KDSOG

REFLEX

REMUR(SPN)

KOLHIDA (NP)

Main experimental

techniques at IBR-2: Neutron diffraction: 7 SANS: 2 Reflectometry: 2 INS: 3

Page 19: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

19Tem

Main research topics

Atomic and magnetic structure of new materials.HRFD, DN-2

Atomic and magnetic dynamics.DIN, NERA, KDSOG

Non-crystalline materials, liquids, polymers, colloidal solutions.YuMO

Surfaces, nanostructures of low dimension.REMUR, REFLEX

Biological materials and macro-molecules.YuMO

High pressure physics.DN-12, DN-2

Internal stresses in industrial materials and components.HRFD, FSD

Texture and properties of rocks.SKAT, EPSILON

Page 20: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

20Rietv

Rietveld refinement of HgBa2CuO4.12 structure; IBR-2, HRFD

H g -1 2 0 1n (O 3 )= 0 .1 2

0 .8 1 .0 1 .2 1 .4 1 .6 1 .8 2 .0d , Å

Nor

mal

ized

inte

nsit

y

- 505

hg5f-c

0 .8 0 .9 1 .0 1 .1

Mercury based high-Tc superconductors.

Collaboration FLNP – MSU (Moscow)

Page 21: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

21Hg-Tc

The temperature of SC phase transition at HgBa2Cu(O/F)4+

as a function of oxygen / fluorine content

Тhe temperature of phase transition depends on charge!

Page 22: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

22Hg-F-dist.

Interatomic (apical) distances in HgBa2CuO4(O/F)

Apical distances depend on the amount of anions!

From: A.M. Abakumov et al.,PRL 80 (1998) 385.

Page 23: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

23cmr

Colossal_Magneto_Resistivity (CMR) – effect in

T1-xDxMnO3 manganites, T = La, Pr, D = Ca, Sr.

Electrical resistivity decreases in 107 times under the influence

of magnetic field!

Page 24: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

24

(La0.25Pr0.75)0.7Ca0.3MnO3, isotope enriched:

18O, 75% (O-18) insulating down to 4 K  16O, 99.7% (O-16) metallic at T<100 K

LPCM/Samples

0 .8 1 .0 1 .2 1 .4 1 .6 1 .8 2 .0 2 .2 2 .4 2 .6 2 .8d , Å

Nor

mal

ized

neu

tron

cou

nts

-505

0.8 0.9 1.0 1.1 1.2 1.3 1.4

(L a 0 .2 5P r 0 .7 5)0 .7C a 0 .3M n O 3 , O -1 8la-o18c

H R F DT = 2 9 3 K

6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0T em p era tu re , K

1 E + 1

1 E + 2

1 E + 3

1 E + 4

1 E + 5

1 E + 6

1 E + 7

1 E + 8

cm)

resis-c

O -1 8

O -1 6

(L a 0 .2 5P r 0 .7 5)0 .7C a 0 .3M n O 3

Giant oxygen isotope effect in (La0.25Pr0.75)0.7Ca0.3MnO3 (LPCM-

75)

N.A. Babushkina et al., Nature 391 (1998) 159

Page 25: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

25

7 .6 7 5

7 .6 8 0

7 .6 8 5

7 .6 9 0

7 .6 9 5

Latt

ice

para

met

ers

(Å)

b-75c

b '

T C OT A F MT F M

O -1 6

O -1 8

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0T emperature (K)

5 .4 3 5

5 .4 4 0

5 .4 4 5

5 .4 5 0

5 .4 5 5

5 .4 6 0

Latt

ice

para

met

ers

(Å)

a

c

O -1 6

ac-75c

O -1 6

O -1 8

/ O -1 8

Temperature dependencies of lattice parameters a and c (bottom) and b (top) for the O-16 and O-18 samples. The vertical lines mark the temperatures of CO, AFM, and FM transitions. Between TFM and room temperature the parameters of both samples are coincide.

(La0.25Pr0.75)0.7Ca0.3MnO3,

16O / 18O (O-16 / O-18)

16O / 18O – Latt. Param.

Giant oxygen isotope effect in (LPCM-75). Lattice parameters.

Page 26: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

26

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

1 5 6 .0

1 5 6 .5

1 5 7 .0

1 5 7 .5

1 5 8 .0<

Mn-

O-M

n> (

degr

.)

O -1 8

angsr-c

O -1 6

T F M (O -1 6 )

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0T em p era tu re (K )

1 .9 5 5

1 .9 6 0

1 .9 6 5

1 .9 7 0

<M

n -

O>

)

mno1-c

O -1 8

O -1 6T F M (O -1 6 )

                                          

 

Interatomic distances and

valent angles changes after

oxygen isotope (16O→18O)

exchange in LPCM-75.

16O / 18O

Giant oxygen isotope effect in (LPCM-75). Structural

parameters.

Page 27: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

27shema

Diffraction experiment for

measuring of internal stresses

inside material or component:

• highly accurate,

• completely nondestructive,

• multi-phase materials,

• in situ mode.

incident neutron beam

diaphragm

component(sample)

By two detectors at detectors at 90 one can measure stresses in both Q1 and Q2 directions simultaneously.

gauge volume

Neutron diffraction: an effective, nondestructive technique

for determining residual stresses (applied research).

Page 28: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

28Tar-1

Stress rig on neutron beam Tensile grip design

Typical shape and size of a sample

Loading device “TIRAtest”

Page 29: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

29adapter

Residual stresses in bimetallic steel-zirconium adapter

Cross-section of bimetallic adapterwall

Bimetallic adapter placed at HRFD

steel Zr

Page 30: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

30Karta-1

The diffraction (111) peak width distributionfor steel region.

Axial deformation map for steel region.The first zirconium screw tooth: Y=0; X=5.

Residual stresses in bimetallic steel-zirconium adapter

Page 31: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

31Tem

Condensed Matter Division & IBR-2:

Last 5 years Ph.D. thesis.

1. V.V. Luzin “Texture in bulk samples: experimental and model investigation”

NSVR & SKAT, 1999.

2. V.Yu. Kazimirov “New ferroelectrics – ferroelastics (CH3)2NH2Al(SO4)26H2O”

NERA, 1999.

3. О.V. Sobolev “Inelastic neutron scattering by water solutions and micro-dynamics

of hydration” DIN, 2000.

4. А.N. Skomorokhov “Phonon-maxon area in excitation spectra of liquid helium”

DIN, 2000.

5. D.V. Sheptyakov “Structural peculiarities of complex copper oxides

superconductors” HRFD & DN-12, 2000.

6. D.P. Kozlenko “Structure and dynamics of ammonium halides”

DN-12, 2001.

Page 32: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

32Tem

7. Т.А. Lychagina “Texture and elastic properties of materials: neutron diffraction

studies” SKAT, 2002.

8. S.V. Kozhevnikov “Effect of spatial splitting of polarized neutron beam:

investigation and application” SPN, 2002.

9. G.D. Bokuchva “Neutron diffraction studies of internal stresses in bulk materials”

HRFD, 2002.

10. D.Е. Burilichiev “Texture and elastic anisotropy of earth mantle rocks

at high pressure” SKAT, 2002.

11. М.V. Avdeev “The investigation of the fractal properties of global proteins

surface” YuMO, 2002.

12. V.I. Bodnarchuk “Interaction of polarized neutrons with non-collinear

magnetic structures” REFLEX, 2003.

13. А.Kh. Islamov “Structure and properties of lipid membranes: neutron

diffraction studies” DN-2, YuMO, 2003.

Condensed Matter Division & IBR-2: Last 5 years Ph.D. thesis.

Page 33: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

33User-Pr

User program at the IBR-2 spectrometers

Experts’ commissions

Diffraction:H. Tietze-Jaensh, GermanyP. Mikula, Czech Rep.V.A. Somenkov, Russia

Inelastic Scatt.:P. Alexeev, RussiaW. Zajak, PolandI. Padureanu, Romania

Neutron optics:H. Lauter, FranceD.I. Nagy, HungaryA.I. Okorokov, Russia

SANS:G. Pepy, FranceA.N. Ozerin, RussiaJ. Pleshtil, Czech. Rep.J. Teixeira, France

Time-sharing (14 spectrometers)

FLNP (35%)

Externalregular (55%)

Externalfast (10%)

User statistics

FLNP, 25%

Germany, 17%

Russia, 31%

Poland, 5%

France, 3%

Others, 19%

Page 34: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

34Tem

Conclusions

Neutron scattering at the IBR-2 has the excellent present

and good prospect for future because:

IBR-2 is one of the best neutron sources for condensed matter studies;

Parameters and performance of neutron spectrometers at the IBR-2

are at a world top level;

There exists a realistic program for development of spectrometers;

The staff is well experienced and there is a good balance between

aged and young scientists;

There exists a good collaboration with many Institutions.

Page 35: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

35

END

Page 36: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

36Tem

Our problems

1. Neutron guide tubes. 2. Detectors.

DN-12 diffractometer: intensity gain-factor after installation of a neutron guide tube.

Multi-element back-scattering detector for FSD diffractometer.

Page 37: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

37Tem

The first steps of TOF neutron scattering

for condensed matter research in FLNP (1963 – 1980)

The first TOF diffraction patterns obtained at a pulsed neutron source

(Buras, Nietz, Sosnovska, 1963).

Inverted geometry for inelastic scattering (Bajorek, 1964).

Geometrical focusing in TOF diffraction (Holas, 1966).

Diffraction and inelastic scattering with pulsed magnetic field (Nietz, 1968).

Comb-like neutron moderator (Nazarov, 1972).

The first TOF structural experiment (Balagurov, 1975).

The first TOF SANS (small-angle) experiment (Ostanevich, 1975).

Correlation spectrometry at pulsed neutron source (Kroo, 1975).

The first 2D & 3D TOF diffraction patterns (Balagurov, 1977, 1980).

Axial geometry for SANS (Ostanevich, 1978).

Spin-flipper with extended working area (Korneev, 1979).

Page 38: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

38Tem

Development of TOF technique for condensed matter research

at the IBR-2 in 1981 – 2003

The first mirror polarizer for TOF spectrometer (Korneev, 1981).

Neutron guide tubes for pulsed neutron source (Nazarov, 1982).

Axial geometry for SANS (Ostanevich, 1982).

The first real-time TOF experiments with ts1 min. (Mironova, 1985).

Fourier-diffractometer at pulsed neutron source

(Aksenov, Balagurov, Trounov, Hiismaki, 1992).

The first TOF experiments with sapphire-anvil high pressure cell

(Somenkov, Savenko, 1993).

Inelastic scattering experiments at TOF reflectometer (Korneev, 1995).

Combined electronic & geometrical focusing (Kuzmin, 2001).

Page 39: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

39Diffr.-IBR2

The most important parameters of a pulsed sourcefor neutron scattering experiment

Resolution

IntensityAverage power

SpectrometerPulsed source

Pulse width

Experiment

Duration

Quality of data

What does it mean for the IBR-2 ?

Page 40: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

40Diffr.-IBR2

Diffractometers at the IBR-2

1. HRFD – high resolution Fourier diffractometercrystal structure of powders

2. DN-2 – multi-purpose diffractometersingle crystals, magnetic structures, real-time studies

3. DN-12 – diffractometer for microsampleshigh pressure experiments

4. FSD / EPSILON – stress diffractometersinternal stresses in bulk samples

5. SKAT / NSVR – texture diffractometers texture of rocks and bulk samples

Page 41: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

41izluch

Radiations for diffraction studies of internal stresses

Radiation Accessibility Resolution Resolution Scanning Experiment over d over x depth geometry

-----------------------------------------------------------------------------------------------------------------X-ray +++++ +++ +++ + +++

Synchrotron ++ +++++ +++++ +++ ++radiation

Neutron ++ ++ + +++++ +++++-----------------------------------------------------------------------------------------------

With TOF neutron diffractometer (pulsed neutron source) determination of stress anisotropy is possible! up to 3 cm in steel,

6 cm in Al

Page 42: 1 1961 – 1968IBR-1 (1 – 6 kW) 1969 – 1980 IBR-30 (15 kW) 1981 – 1983IBR-2 (100 – 1000 kW) 1984 – 2004IBR-2 (1500 – 2000 kW) tit Neutron scattering in condensed

42sdvig

Peak shift for E=200 GPa and loading of 20 MPa and 200 MPa

Peak shift under loading for d/d ≈ 0.001