43
1 1 1 Wide Area Networks (WAN) - Synchronous Digital Hierarchy (SDH) AAU Jens H. Sørensen [email protected] 20 Oktober 2005

1 1 1 Wide Area Networks (WAN) - Synchronous Digital Hierarchy (SDH) AAU Jens H. Sørensen [email protected] 20 Oktober 2005

Embed Size (px)

Citation preview

  • Slide 1

Slide 2 1 1 1 Wide Area Networks (WAN) - Synchronous Digital Hierarchy (SDH) AAU Jens H. Srensen [email protected] 20 Oktober 2005 Slide 3 2 2 Table of Contents Objectives Introduction to WANs Typical WAN Technologies SDH Protocol SDH Equipment SDH Networks SDH Network Management SDH Services (partly 2nd part) WDM/OTN (2nd part) Network availability, restoration and automatic protection (2nd part) Next/new Generation SDH and relations to IP, ATM, WDM, Ethernet (2nd part) Network Synchronisation (2nd part) Slide 4 3 3 Objectives Discussion of LAN versus WAN, scaleability issues WAN technologies, overview Typical WANs, examples, SDH Relations to networks based on Ethernet/IP/ATM/DSL Upcoming WAN networks Slide 5 4 4 SDH Services Slide 6 5 5 Leased line Services (fixed dedicated bandwidth): 2 Mbit/s, n x 2 Mbit/s VC-12, n x VC-12 34 Mbit/s, 45 M Mbit/s VC-3, n x VC-3 140 Mbit/s VC-4 VC-4-4c, VC-4-16c Grey fibres / WDM channels add-on services Alternative routing, Specific routing, automatic protection, various Service Level Agreements (SLAs) Slide 7 6 6 SDH services - Users Slide 8 7 7 Slide 9 8 8 Slide 10 9 9 Slide 11 10 SDH services - Users Slide 12 11 Wavelength Division Multiplexing (WDM) Slide 13 12 WDM systems Passive WDM system - no active electronics - Reach up to appr. 40 km - no e2e management Optical amplified WDM system - Optical amplifiers (end points) - Optional mid-span optical amplifiers - Typical reach up to 700 km - e2e management possible WDM system characterisation - Number of possible channels - No. of channels in use - A channel can be inegrated or open - Geografical reach measured in no. of spans (= mid span amplifiers + 1) WDM p 5 min Slide 14 13 WDM network, 4 STM-N Rings Slide 15 14 WDM, OTN WDM Dense WDM Coarse WDM Optical Transport Networks, OTN Direct switching of optical signals with specific wavelengths Optical ADM Optical XC Slide 16 15 Network Availability, Restoration and Automatic Protection the five 9s (99,999%) Slide 17 16 Alternative Routing and Protection Costumer address 1 Costumer address 2 Kunde adresse1 Kunde adresse2 Kunde adresse1 Kunde adresse2 Circuits with alternative routes (Costumer initiates protection) Protected Circuit (Service provider responsible for circuit protecion via costumer based equipment) Site 1 Site 2 Site 1 Costumer equipment SP equipment ( ) Costumer equipment Slide 18 17 Alternative Routes, Alternative Sites Circuit with alternative routes (cable) Circuit with alternative routes and sites Slide 19 18 Protection SNC-PTrail Inherent monitoring Ring Linear Non intrusive monitoring shared dedicated MS VC Classification shared dedicated MS VC Slide 20 19 Protection af Network Connections Linear protection 1+1 protection (dedicated) 1 : N protection (dedicated or shared) TX RX Working Protecting TX RX Working Protecting TX RX Working Slide 21 20 SNCP Protection in a sub-net or end-to-end Operates at SDH path level (VC-12, VC-4) simple protection (switching in RX equipment) Sub-network Working Protecting Sub Network Connection Protection Slide 22 21 Protection af Network connections Ring protection TX RX Slide 23 22 Multiplexer Shared Protection Ring (MSSPRING) NormalCable fault between Node A1 and Node A6 Slide 24 23 Eksempel p SNC beskyttelse Slide 25 24 Next/new Generation SDH and relations to IP, ATM, WDM, Ethernet Slide 26 25 WAN Transport platforms - relations 2 Mbit/s 34 Mbit/s 155 Mbit/s 622 Mbit/s 2,5 Gbit/s10 Gbit/s 40 Gbit/s IP ATM SDH WDM FIBER Packet Over Sonet (POS) with Contiguous concatenation Slide 27 26 Data and SDH C-3 ( 49.5 Mbit/s) C-3 C-4 ( 149 Mbit/s) C-4-4c ( 599 Mbit/s) C-4-4c C-4-16c ( 2.4 Gbit/s) C-4-16c SDH 20% 50% 67% 33% 67% 33% 42% C-4-64c100% Ethernet ATM ESCON Fibre Channel Fast Ethernet Gigabit Ethernet Data 10 Mbit/s 25 Mbit/s 200 Mbit/s 400 Mbit/s 800 Mbit/s 100 Mbit/s 1 Gbit/s 10 Gb Ethernet10 Gbit/s Efficiency Transport "efficiency" Solution: Virtual Concatenation Slide 28 27 Next Generation SDH Virtual Concatenation Generic Frame Procedure (GFP) Link Capacity Adjustment Scheme (LCAS) Slide 29 28 LSP 1 LSP 2 LSP 1 VCX/ VCG VC-n 1 VC-n 2 STM-N Virtuel multiplexing of a block of VC-n's (VCG) VC-n 1 VC-n 2 VCX/ VCG LSP 1 LSP 2 LSP 1 Slide 30 29 C-n-Xc C-n 1 2 X X VC-n = VC-n-Xv Virtual Concatenation VC-n-Xc transport through a VC-n only network 29 Slide 31 30 Virtual Concatenation C-12-5c C-12-12c C-12-46c C-3-2c C-3-4c C-3-8c C-4-6c C-4-7c SDH 92% 98% 100% 89% 95% C-4-64c100% Ethernet ATM ESCON Fibre Channel Fast Ethernet Gigabit Ethernet Data 10 Mbit/s 25 Mbit/s 200 Mbit/s 400 Mbit/s 800 Mbit/s 100 Mbit/s 1 Gbit/s 10 Gb Ethernet10 Gbit/s Efficiency Transport efficiencies 30 Slide 32 31 Mapping Data SDH, SONET and OTN provide fixed rate channels, with virtual concatenation and LCAS to provide the best match 31 to map the different types of Data into a fixed rate channel a new mechanism is defined: Generic Framing Procedure (GFP) i.e. ITU-T recommendation G.7041/Y.1303 GFP is a generic mechanism to carry any packet signal (Ethernet, Fiber channel, ESCON) over fixed rate channels VC-n, VC-n-Xc, VC-n-Xv and LCAS providing flexible adjustment of a VC-n-Xv channel most Data transport is packet based Slide 33 32 Generic Framing Procedure 32 EthernetIP/PPP Fibre Channel FICONESCON other client signals SDH/SONET pathOTN pathother CBR path GFP - Client Specific Aspects (payload dependent) GFP - Common Aspects (payload independent) Slide 34 33 Link Capacity Adjustment Scheme (LCAS) Bandwidth can dynamically change (eg. nxVC- 12, nxVC-4) "Hitless" change og bandwidth Automatic adjustment of bandwidth in case of failure in one or more VC-ns Different up- og down bandwidth is supported The combination of LCAS and VC enables cheap protection Slide 35 34 Upcoming WANs Slide 36 35 Slide 37 36 Slide 38 37 Network Synchronisation Slide 39 38 Consequences in case of lack of synchronisation Slip rate = clock offset x frame rate x 86400 (s) pr. day For 2Mbit/s signals, frame rate = 8K frames/s : 10 -11 = 1 slip in 4.8 months 10 -10 = 1 slip in 14.5 days 10 -9 = 1 slip in 1.45 days 10 -8 = 6.9 slips per day 10 -7 = 2.9 slips per hour 10 -6 = 28.8 slips per hour 10 -5 = 4.8 slips per minute Slide 40 39 Necessary accuracy 1 sec per day~1 / 86.400 = 11,610 -6 Equipment in hold-over~4,610 -6 SASE oscillator~210 -10 Csium modul~< 110 -11 (10 -10 svarer til en njagtighed p cm p jordens omkreds) Slide 41 40 The effect of Slips Tale Uncompressed - 5% slips medfrer hrbare klik Compressed - et slip vil medfre hrbart klik Fax Et slip kan fjerne flere linier Modem Et slip kan medfre adskillige sekunders drop out Compressed video Et slip kan fjerne flere linier Flere slip kan fryse billedet i sekunder Encrypted/compressed data protokol Slip medfrer reduceret bndbredde Slide 42 41 Netopbygning NATIONALT NETLAG REGIONALT NETLAG LOKALT NETLAG Primr forbindelse Sekundr forbindelse SASEclockG.812 SASEclockG.812SASEclockG.812SASEclockG.812 SASEclockG.812 SASEclockG.812 SASEclockG.812 SASEclockG.812 SASEclockG.812 SASEclockG.812SASEclockG.812 STM-N STM-N STM-N PRCG.811 Slide 43 42 Referencer Tidsenhed - sekund (SI-enheden for tid) The second is the duration of 9.192.631.770 periods of the radiation corresponding to the transition between the two hyperfine levels of the fundamental state of the Cesium 133 atom Tidligere anvendte man et sekund defineret som tiden for n jordrotation divideret med 86.400. Slide 44 43 Referencer (4) GPS princip 4 satellitter ndvendig for (x, y, z, t)