092013 Replication 3 Post

Embed Size (px)

Citation preview

  • 8/13/2019 092013 Replication 3 Post

    1/39

    Structure and Mechanismof DNA Replication

  • 8/13/2019 092013 Replication 3 Post

    2/39

  • 8/13/2019 092013 Replication 3 Post

    3/39

    Okazakis experiments:Labeling the DNA in cells with a mutant ligase

  • 8/13/2019 092013 Replication 3 Post

    4/39

    Text

    Objectives:

    1. Analyze data from and propose experiments to probe the

    function of the components of the replication machinery.2. Predict the effect on replication when a topoisomerase is

    mutated or deleted.

    3. Describe the basic elements for replication initiation and

    predict the consequence of mutations in one of thecomponents in replication initiation.

    4. Explain the end replication problem and describe therequirements for replicating DNA ends.

    Goal: To understand how the genetic material isduplicated and assess how duplication is achieved with

    extraordinary accuracy.

  • 8/13/2019 092013 Replication 3 Post

    5/39

    Combining the chemistry and the polymerase

  • 8/13/2019 092013 Replication 3 Post

    6/39

    Structure determination using X-ray crystallography

    Courtesy D. Jeruzalmi

  • 8/13/2019 092013 Replication 3 Post

    7/39

    DNA polymerase

    fingers

    - template - incoming base - quality control

    palm

    - chemistry - qc

    thumb - product duplex

    3-5 exonuclease - proofreading

  • 8/13/2019 092013 Replication 3 Post

    8/39

    primer

    template

  • 8/13/2019 092013 Replication 3 Post

    9/39

    primer

    template

  • 8/13/2019 092013 Replication 3 Post

    10/39

    fingers - bind incoming dNTP - conformational change - sense base-pair geometry

    open

    Combining the chemistry and the polymerase

    P

    P

    P

    3'-OH

    ion B

    primer template5'

    5'

    3'

    O-helix ofDNA polymerase(open)

    ARG

    Lys

    Tyr

    C

    G

    ion A

    incomingdNTP

    ++

    ++

    Catalytic site

    closed

    P

    P

    P

    40

    3'-OH

    5'

    5' 3'

    O-helix(closed)

    rotation of O-helix

    ARGLys

    Tyr

    C G ++

    ++

  • 8/13/2019 092013 Replication 3 Post

    11/39

    fingers - bind incoming dNTP - conformational change - sense base-pair geometry

    open

    P

    P

    P

    3'-OH

    ion B

    primer template5'

    5'

    3'

    O-helix ofDNA polymerase(open)

    ARG

    Lys

    Tyr

    C

    G

    ion A

    incomingdNTP

    ++

    ++

    Catalytic site

    closed

    P

    P

    P

    40

    3'-OH

    5'

    5' 3'

    O-helix(closed)

    rotation of O-helix

    ARGLys

    Tyr

    C G ++

    ++

    Combining the chemistry and the polymerase

  • 8/13/2019 092013 Replication 3 Post

    12/39

    fingers - bind incoming dNTP - conformational change - sense base-pair geometry

    open

    P

    P

    P

    3'-OH

    ion B

    primer template5'

    5'

    3'

    O-helix ofDNA polymerase(open)

    ARG

    Lys

    Tyr

    C

    G

    ion A

    incomingdNTP

    ++

    ++

    Catalytic site

    closed

    P

    P

    P

    40

    3'-OH

    5'

    5' 3'

    O-helix(closed)

    rotation of O-helix

    ARGLys

    Tyr

    C G ++

    ++

    Tyr

    Combining the chemistry and the polymerase

  • 8/13/2019 092013 Replication 3 Post

    13/39

    fingers

    palmthumbexonuclease

    primertemplate

  • 8/13/2019 092013 Replication 3 Post

    14/39

    incomingdNTP

    templatebase

  • 8/13/2019 092013 Replication 3 Post

    15/39

    space forincoming

    dNTP

    templatebase

  • 8/13/2019 092013 Replication 3 Post

    16/39

  • 8/13/2019 092013 Replication 3 Post

    17/39

    DNA replication is very complex.

    There are multiple polymerases.

  • 8/13/2019 092013 Replication 3 Post

    18/39

  • 8/13/2019 092013 Replication 3 Post

    19/39

    Replication changes the supercoiling state of theDNA and therefore requires topoisomerases.

  • 8/13/2019 092013 Replication 3 Post

    20/39

    Peter et al. (1998) Cell, 94.

    Replication generates positive supercoils ahead of thereplication fork

  • 8/13/2019 092013 Replication 3 Post

    21/39

    Peter et al. (1998) Cell, 94.

    Replication generates positive supercoils ahead of thereplication fork

  • 8/13/2019 092013 Replication 3 Post

    22/39

    Two special cases in replication:

    Initiation

    Termination

  • 8/13/2019 092013 Replication 3 Post

    23/39

    Origins of replication

    Replication of chromosomes commences at specificsites called origins.

    Initiator proteins bind to specific DNA elements toactivate replication.

    Replication proceeds bidirectionallyfrom origins withtwo replication forks that move away from each other.

    Replication of circular chromosomes yields interlockeddaughter chromosomes and replication of linearchromosomes yields tangled chromosomes.

  • 8/13/2019 092013 Replication 3 Post

    24/39

    Initiator proteinsbind to specific DNA elements to activate replication.

    Origin

  • 8/13/2019 092013 Replication 3 Post

    25/39

    Divergent replication forks extendout from the origin

  • 8/13/2019 092013 Replication 3 Post

    26/39

    topoisomerase II

  • 8/13/2019 092013 Replication 3 Post

    27/39

    It takes ~40 minutes to replicate the E. colichromosome.In the lab, E. colican divide every 20 min.

    How is this possible?

    Multi-fork Replication

    !"#$%&'()*$+ #$%&'()*$+

    ,"($

    #$%&'()*$+

    *-'($

    #$%&'()*'".

    (/#,0,1,0$1

    1$.#$.)*$+

  • 8/13/2019 092013 Replication 3 Post

    28/39

    Initiation is very tightly controlled so that each origin isactivated once and only once per cell cycle.

    Eukaryotic chromosome contain multiple origins

  • 8/13/2019 092013 Replication 3 Post

    29/39

  • 8/13/2019 092013 Replication 3 Post

    30/39

    The lagging strand cannot be

    completely replicated.

    Template for lagging DNA strand

    Template for leading DNA strand

    !"

    #"

    template DNA new DNA RNA primer

    Replicating chromosome ends

  • 8/13/2019 092013 Replication 3 Post

    31/39

    Genes lost!

    Essential genes here

    - cells die!

    Information loss during replication

  • 8/13/2019 092013 Replication 3 Post

    32/39

    Essential genes here

    Telomere repeat

    - cells die!

    Delaying information loss during replication

  • 8/13/2019 092013 Replication 3 Post

    33/39

    Telomerase!

    Telomere repeat

    Essential genes here

    Solving the information loss problem

  • 8/13/2019 092013 Replication 3 Post

    34/39

    Telomerase!

    Elizabeth H. Blackburn Carol W. Greider Jack W. Szostak

    The Nobel Prize in Physiology or Medicine 2009

  • 8/13/2019 092013 Replication 3 Post

    35/39

    The end replication problem

    + last Okazaki

    fragment

    repair Okazaki

    fragments

    + incompletely

    replicated DNA

    3'5'

    3'5'

    3'5'

    5'3'

    5'3'

    5'5'3'

    3'5'

    5'3'

    3'5'

    5'3'

    3'

  • 8/13/2019 092013 Replication 3 Post

    36/39

    +

    +

    replicate again

    chromosome

    is shorter

    +

    3'5'

    5'3'

    3'5'

    5'3'

    3'

    5'

    5'

    3'

    3'5'

    5'3'

  • 8/13/2019 092013 Replication 3 Post

    37/39

    Telomerase solves the end replication problem

  • 8/13/2019 092013 Replication 3 Post

    38/39

    From MBOG Interactive Animations, Chapter 9 "Action of Telomeres"

  • 8/13/2019 092013 Replication 3 Post

    39/39

    The End

    of DNA replication

    Special thanks to

    Prof. David Jeruzalmi