48
ETAP 5.0 ETAP 5.0 Copyright 2003 Operation Technology, Inc. Short-Circuit ANSI

06 - Short Circuit_ANSI

Embed Size (px)

Citation preview

Page 1: 06 - Short Circuit_ANSI

ETAP 5.0ETAP 5.0

Copyright 2003 Operation Technology, Inc.

Short-Circuit ANSI

Page 2: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 2

Short-Circuit AnalysisTypes of SC Faults

•Three-Phase Ungrounded Fault•Three-Phase Grounded Fault•Phase to Phase Ungrounded Fault•Phase to Phase Grounded Fault•Phase to Ground Fault

Fault Current•IL-G can range in utility systems from a few percent to possibly 115 % ( if Xo < X1 ) of I3-phase (85% of all faults).•In industrial systems the situation IL-G > I3-phase is rare. Typically IL-G ≅ .87 * I3-phase

•In an industrial system, the three-phase fault condition is frequently the only one considered, since this type of fault generally results in Maximum current.

Page 3: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 3

Purpose of Short-Circuit Studies• A Short-Circuit Study can be used to determine

any or all of the following:

– Verify protective device close and latch capability

– Verify protective device Interrupting capability

– Protect equipment from large mechanical forces (maximum fault kA)

– I2t protection for equipment (thermal stress)

– Selecting ratings or settings for relay coordination

Page 4: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 4

System Components Involved in SC Calculations• Power Company Supply

• In-Plant Generators

• Transformers (using negative tolerance)

• Reactors (using negative tolerance)

• Feeder Cables and Bus Duct Systems (at lower temperature limits)

Page 5: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 5

System Components Involved in SC Calculations• Overhead Lines (at lower temperature limit)

• Synchronous Motors

• Induction Motors

• Protective Devices

• Y0 from Static Load and Line Cable

Page 6: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 6

Elements That Contribute Current to a Short-Circuit• Generator

• Power Grid

• Synchronous Motors

• Induction Machines

• Lumped Loads(with some % motor load)

• Inverters

• I0 from Yg-Delta Connected Transformer

Page 7: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 7

Elements Do Not Contribute Current in PowerStation• Static Loads

• Motor Operated Valves

• All Shunt Y Connected Branches

Page 8: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 8

)tSin(Vmv(t) θω +∗=

i(t)v(t)

Short-Circuit Phenomenon

Page 9: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 9

4444 34444 21444 3444 21

Offset) (DCTransientState Steady

t) - sin(

ZVm ) - tsin(

ZVmi(t)

(1) ) t Sin(Vmdtdi L Riv(t)

L

R-e××++×=

+×=+=

φθφθω

θω

expression following theyields 1equation Solving

i(t)v(t)

Page 10: 06 - Short Circuit_ANSI

DC Current

AC Current (Symmetrical) with No AC Decay

Page 11: 06 - Short Circuit_ANSI

AC Fault Current Including the DC Offset (No AC Decay)

Page 12: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 12

Machine Reactance ( λ = L I )

AC Decay Current

Page 13: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 13

Fault Current Including AC & DC Decay

Page 14: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 14

ANSI Calculation Methods1) The ANSI standards handle the AC Decay by varying machine impedance during a fault.

2) The ANSI standards handle the the dc offset by applying multiplying factors. The ANSI Terms for this current are:

•Momentary Current•Close and Latch Current•First Cycle Asymmetrical Current

ANSI

Page 15: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 15

Sources and Models of Fault Currents in ANSI Standards

ModelsAll sources are modeled by an internalvoltage behind its impedance.

E = Prefault VoltageR = Machine Armature ResistanceX = Machine Reactance (X”d, X’d, Xd)

Sources•Synchronous Generators•Synchronous Motors & Condensers•Induction Machines•Electric Utility Systems (Power Grids)

Page 16: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 16

Synchronous GeneratorsSynchronous Generators are modeled in three stages.

Synchronous Motors & CondensersAct as a generator to supply fault current. This current diminishes as the magnetic field in the machine decays.

Induction MachinesTreated the same as synchronous motors except they do not contribute to the fault after 2 sec.

Electric Utility SystemsThe fault current contribution tends to remain constant.

Synchronous Reactance

Transient Reactance

Subtransient Reactance

Page 17: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 17

½ Cycle Network

This is the network used to calculate momentary short-circuit current and protective device duties at the ½ cycle after the fault.

1 ½ to 4 Cycle Network

This network is used to calculate the interrupting short-circuit current and protective device duties 1.5-4 cycles after the fault.

30-Cycle Network

This is the network used to calculate the steady-state short-circuit current and settings for over current relays after 30 cycles.

Page 18: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 18

Reactance Representation forUtility and Synchronous Machine

½ Cycle 1 ½ to 4 Cycle 30 Cycle

Utility X”d X”d X”d

Turbo Generator X”d X”d X’d

Hydro-Gen with Amortisseur

winding

X”d X”d X’d

Hydro-Gen without Amortisseur

winding

0.75*X”d 0.75*X”d X’d

Condenser X”d X”d α

Synchronous Motor

X”d 1.5*X”d α

Page 19: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 19

Reactance Representation for Induction Machine

½ Cycle 1 ½ to 4 Cycle

>1000 hp , <= 1800 rpm

X”d 1.5*X”d

>250, at 3600 rpm X”d 1.5*X”d

All others, >= 50 hp 1.2*X”d 3.0*X”d

< 50 hp 1.67*X”d α

Note: X”d = 1 / LRCpu

Page 20: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 20

Device Duty and Usage of Fault Currentsfrom Different Networks

½ Cycle Currents(Subtransient

Network)

1 ½ to 4 Cycle Currents

(Transient Network)

HV Circuit Breaker Closing and LatchingCapability

InterruptingCapability

LV Circuit Breaker Interrupting Capability ---

Fuse Interrupting Capability

---

SWGR / MCC Bus Bracing ---

Relay Instantaneous Settings

---

30 Cycle currents are used for determining overcurrent settings.

Page 21: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 21

MFm is calculated based on:• Fault X/R (Separate R & X Networks)• Location of fault (Remote / Local generation)

Momentary Multiplying Factor

SC Current Duty Device Rating

HV CB Asymmetrical RMSCrest

C&L RMSC&L RMS

HV Bus Asymmetrical RMSCrest

Asymmetrical RMSCrest

LV Bus Symmetrical RMSAsymmetrical RMS

Symmetrical RMSAsymmetrical RMS

Comparisons of Momentary capability (1/2 Cycle)

Page 22: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 22

MFi is calculated based on:• Fault X/R (Separate R & X Networks)• Location of Fault (Remote / Local generation)• Type and Rating of CB

Interrupting Multiplying Factor

SC Current Duty Device Rating

HV CBAdj. Symmetrical RMS* Adj. Symmetrical RMS*

LV CB & FuseAdj. Symmetrical RMS*** Symmetrical RMS

Comparisons of Interrupting Capability (1 ½ to 4 Cycle)

Page 23: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 23

HV CB Closing and Latching Duty

Calculate ½ Cycle Current (Imom, rms, sym) using ½ Cycle Network.

• Calculate X/R ratio and Multiplying factor MFm

• Imom, rms, Asym = MFm * Imom, rms, sym

Page 24: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 24

HV CB Interrupting Duty

Calculate 1½ to 4 Cycle Current (Imom, rms, sym) using ½ Cycle Network.

• Determine Local and Remote contributions (A “local” contribution is fed predominantly from generators through no more than one transformation or with external reactances in series that is less than 1.5 times generator subtransient reactance. Otherwise the contribution is defined as “remote”).

• Calculate no AC Decay ratio (NACD) and multiplying factor MFi

NACD = IRemote / ITotalITotal = ILocal + IRemote

(NACD = 0 if all local & NACD = 1 if all remote)

• Calculate Iint, rms, adj = MFi * Iint, rms, Symm

Page 25: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 25

HV CB Interrupting Capability• CB Interrupting kA varies between Max kA and Rated kA as applied kV changes – MVAsc capability.

• ETAP’s comparison between CB Duty of Adj. Symmetrical kA and CB capability of Adjusted Int. kA verifies both symmetrical and asymmetrical rating.

• The Option of C37.010-1999 standard allows user to specify CPT.

• Generator CB has higher DC rating and is always compared against maximum through SC kA.

Page 26: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 26

LV CB Interrupting Duty

• LV CB take instantaneous action.

• Calculate ½ Cycle current Irms, Symm (I’f) from the ½cycle network.

• Calculate X/R ratio and MFi (based on CB type).

• Calculate adjusted interrupting current Iadj, rms, symm = MFi * Irms, Symm

Page 27: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 27

Fuse Interrupting Duty

Calculate ½ Cycle current Iint, rms, symm from ½ Cycle Network.

• Same procedure to calculate Iint, rms, asymm as for CB.

Page 28: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 28

LL--G FaultsG Faults

Page 29: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 29

L-G Faults

Symmetrical Components

Page 30: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 30

Sequence Networks

Page 31: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 31

L-G Fault Sequence Network Connections

0ZZZ

V3I

I3I

021

efaultPrf

af 0

=++

×=

×=

g Zif

Page 32: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 32

21

efaultPrf

aa

ZZV3I

II12

=

−=

L-L Fault Sequence Network Connections

Page 33: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 33

L-L-G Fault Sequence Network Connections

0ZZ

ZZZ

VI

I0III

20

201

efaultPrf

aaaa 012

=

+

+=

==++

g Zif

Page 34: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 34

Transformer Zero Sequence Connections

Page 35: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 35

grounded.solidly areer transformConnected Y/

or Generators if case thebemay This

I: then trueare conditions thisIf

& : ifgreater

becan faultsG -L case. severemost theisfault phase-3 aGenerally

1f3

1021

<

<=

φφ fI

ZZZZ

Solid Grounded Devices and L-G Faults

Page 36: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 36

Complete reports that include individual branch contributions for:

•L-G Faults

•L-L-G Faults

•L-L Faults

One-line diagram displayed results that include:

•L-G/L-L-G/L-L fault current contributions

•Sequence voltage and currents

•Phase Voltages

Unbalanced Faults Display & Reports

Page 37: 06 - Short Circuit_ANSI
Page 38: 06 - Short Circuit_ANSI
Page 39: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 39

SC Study Case Info Page

Page 40: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 40

SC Study Case Standard Page

Page 41: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 41

Tolerance Adjustments

•Transformer Impedance

•Reactor Resistance

•Overload Heater Resistance Temperature

Corrections

•Transmission Line Resistance

•Cable Resistance

SC Study Case Adjustments Page

Length Adjustments

•Cable Length

•Transmission Line Length

Adjust Fault Impedance

•L-G fault Impedance

Page 42: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 42

Tolerance Adjustments

ToleranceLengthLength

ToleranceLengthLength

ToleranceZZ

onLineTransmissionLineTransmissi

CableCable

rTransformerTransforme

)1(*')1(*'

)1(*'

±=±=

±=

Positive tolerance value is used for IEC Minimum If calculation.

Negative tolerance value is used for all other calculations.

Adjustments can be applied Individually or Globally

Page 43: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 43

Temperature Correction

C in limit etemperatur ConductorTc

C in etemperatur base ConductorTbetemperatur operating at ResistanceR'

retempereatu base at ResistanceR

TbTcRR

TbTcRR

BASE

BASEAlumi

BASECopper

===

=

++

=

++

=

)1.228()1.228(*'

)5.234()5.234(*''

Temperature Correction can be appliedIndividually or Globally

Page 44: 06 - Short Circuit_ANSI

TransformersT1 X/R PS =12PT =12ST =12T2 X/R = 12

Power Grid U1X/R = 55

Lump1Y open grounded

Gen1Voltage ControlDesign Setting:%Pf = 85MW = 4 Max Q = 9Min Q = -3

System forSC Study

Page 45: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 45

Short-Circuit Alerts

• Bus Alert

• Protective Device Alert

• Marginal Device Limit

Page 46: 06 - Short Circuit_ANSI

Copyright 2003 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 46

Bus SC Rating

Type of Device Monitored Parameter Condition Reported

MV Bus (> 1000 Volts)Momentary Asymmetrical. rms kA Bracing Asymmetrical

Momentary Asymmetrical. crest kA Bracing Crest

LV Bus (<1000Volts)Momentary Symmetrical. rms kA Bracing Symmetrical

Momentary Asymmetrical. rms kA Bracing Asymmetrical

Protective Device RatingDevice Type ANSI Monitored Parameters IEC Monitored Parameters

LVCB Interrupting Adjusted Symmetrical. rms kA Breaking

HV CB

Momentary C&L MakingMomentary C&L Crest kA N/A

Interrupting Adjusted Symmetrical. rms kA Breaking

Fuse Interrupting Adjusted Symmetrical. rms kA Breaking

SPDT Momentary Asymmetrical. rms kA MakingSPST Switches Momentary Asymmetrical. rms kA Making

Page 47: 06 - Short Circuit_ANSI

Run a 3-phase Duty SC calculation for a fault on Bus4. The display shows the Initial Symmetrical Short-Circuit Current.

3-Phase Duty SC Results

Page 48: 06 - Short Circuit_ANSI

Unbalance Fault Calculation