04 WP Structure Forming Enzymes Jo Handouts

Embed Size (px)

Citation preview

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    1/8

    1

    PhD Course November 3 7, 2008

    Whey proteins and structure forming proteases

    1 Jeanette Otte - November 2008

    Jeanette OtteFood Chemistry section

    [email protected]

    Whey proteins-Lg 3.5 g/L-La 1.2 g/L

    Ig 0.7 g/L

    High biological value

    Interesting biological activity

    Whey proteins

    2 Jeanette Otte - November 2008

    .CMP ~ 1 g/L

    LP ~ 30 mg/LLF 20-200 mg/LOsteopontinGrowth factorsEtc. etc.

    Functional ingredients< Enzymatic modification,

    e.g. proteolysis

    -Lactoglobulin

    162 aa, 18.3 kDa Compact, globular 3.6 x 3.6 nm

    8 -strands forming a barrel binding small hydrophobic

    3 Jeanette Otte - November 2008

    molecules, e.g. retinol Lipocalin family

    2 S-S bonds 2 Trp and 4 Tyr

    Genetic variants A, B,

    (Fox & McSweeney, 1998; Holt & Sawyer, 2003)

    -Lg in solution

    Soluble in dilute salt pI 5.2 Association behaviour:

    pH < 3.5 : monomer 18 kDa 3.5

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    2/8

    2

    -Lactalbumin

    123 aa, 14.2 kDa Compact, globular 2.3 x 2.6 x 4.0 nm

    2 lobes: and

    7 Jeanette Otte - November 2008

    Binds 1-2 mol Ca ++

    4 S-S bonds 4 Trp and 4 Tyr

    N-glycosylation (few %, Asn45)

    Genetic variant B

    (Brew, 2003)Asn45

    -La in solution

    Soluble in water, pI ~4.8 Metalloprotein: Apo-form : heat labile (55 C), renatures with

    Ca 2+

    Holo-form: more heat stable

    8 Jeanette Otte - November 2008

    Denaturation: temperature dependent (Fig. 9.15) Conformations:

    Native Pre-MG Molten Globule Unfolded

    (Fox & NcSweeney, 1998)

    3D structure of -La

    -lobe

    9 Jeanette Otte - November 2008

    -lobe

    The Ca-binding cleft in -La

    10 Jeanette Otte - November 2008 (Fox & McSweeney, 1998)

    -La: metal binding sites Primary Ca 2+ binding site:

    In the loop, coordinated byAsp82, Asp87 and Asp88 carboxyl Oand Lys79 and Asp84 peptide carbonyl O

    11 Jeanette Otte - November 2008

    Zn 2+ binding site:In the cleft, coordinated by Glu49 and Glu116

    Second Ca 2+ binding site:Coordinated by Thr38, Glu39 and Asp83 sidechain O, and Leu81 peptide carbonyl O

    (Brew, 2003)

    Whey protein structures

    Aggregates / polymers / particles A foam An emulsion An emulsion gel A gel Extruded roducts

    12 Jeanette Otte - November 2008

    Microencapsulating agents Film and Fouling deposits

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    3/8

    3

    OUTLINE

    Protease-induced gelation of WPI and -Lg

    Protease-induced gelation of -La

    Protease-induced fibrils from -La

    13 Jeanette Otte - November 2008

    A Gel

    A visco-elastic solid composed of a smallamount of polymer (protein)forming a continous (crosslinked) network(the solid phase),

    Aggregate

    14 Jeanette Otte - November 2008

    - that immobilizes a large amountof water/solvent (the liquid phase)

    ne- stranded

    (Clark, 1992)

    Gelation can be induced ...

    Physically (heat , high pressure, ...)

    Chemically (acid, alkali, salts, urea, alcohols,

    changing pH, antibodies, ...)

    15 Jeanette Otte - November 2008

    Enzymatically (cross-linking, proteolysis , .......)

    Control

    pH 3.0 pH 5.2 pH 7.0

    Proteolysis affects microstructure andstrength of Heat-induced WPI Gels

    1 m

    16 Jeanette Otte - November 2008

    + BLP

    1 m*

    (Otte et al. 1996a)

    The enzymeB a c i l l u s l i c h e n i f o r m i s protease (BLP) from Novozymes A/S

    A serine endoprotease specific for : Glu- and Asp-

    Temperature optimum: 60C

    17 Jeanette Otte - November 2008

    pH optimum: high

    1. Protease-induced gelation of WPI and -Lg

    18 Jeanette Otte - November 2008

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    4/8

    4

    Protease-induced gelation of WP

    19 Jeanette Otte - November 2008

    (Otte et al. 1996b)

    Protease-induced gelation of -LgpH 7.5, 50C

    - l a c

    t o g

    l o b u l

    i n ( % )

    60

    70

    80

    90

    100

    n c e a t

    5 0 0 n m

    2

    3

    i c d i a m e

    t e r

    ( n m

    )

    1000

    1200

    1400

    1600

    1800

    2000

    20 Jeanette Otte - November 2008

    Incubation time (min)

    0 20 40 60 80 100 120 140

    R e m a

    i n i n g

    -

    20

    30

    40

    50

    A b s o r b a

    0

    1

    H y d r o

    d y n a m

    0

    200

    400

    600

    800

    (Otte et al. 1997)

    1 m

    Capillary electrophoresis of supernatant andprecipitate

    Supernatant

    12345

    45

    12345

    0 min

    10 min1 2 3 4 5 67

    89

    10 1112

    13 14

    -Lg

    t 2 1 0 n m

    Aggregates

    21 Jeanette Otte - November 2008

    123

    1234

    5

    Migration time (min)10 15 20 25 30 35

    12345

    70 min

    100 min

    130 min1 2 3 4 56

    7 8 9

    10 1112

    13 14

    A b s o r b a n c e

    Migration time (min)10 15 20 25 30 35

    1 7

    6

    9

    1142

    1

    2 46

    7

    8

    911 13

    (Otte et al. 2000)

    Primary peptide in -Lg aggregates

    135 Lys-Phe-Asp-Lys-Ala-Leu-Lys-Ala-Leu-Pro- 145 Met-His-Ile-Arg-Leu-Ser-Phe-Asn-Pro-Thr- 155 Gln-Leu-Glu-Glu -

    2825 Da

    22 Jeanette Otte - November 2008

    (Otte et al. 2000)

    QuestionAre there any structural features that could favour

    aggregation of this peptide with the same or other peptides?

    Hydrolysis of -Lg into 2.5 kDa peptidesFormation of Aggregates from most peptides

    Primary peptide in aggregates is -Lg f135-157/158Aggregates associate into a Gel network

    Protease-induced gelation of WPI and -LgM echanism

    23 Jeanette Otte - November 2008

    Mainly by non-covalent interactions

    1 m

    24 Jeanette Otte - November 2008

    . - -

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    5/8

    5

    6.000 x resolution:Needles and pins

    Protease induced gelation of -lactalbumin:Microstructure (1)

    25 Jeanette Otte - November 2008

    TEM image0 mM added Ca 2+ ,10% solutions, 2%BLP, pH 7.5, 50 oC

    (Ipsen et al, 2000)

    39.000 x resolution:Striking uniformity- but what are thosecircles?

    Protease induced gelation of -lactalbumin:Microstructure (2)

    26 Jeanette Otte - November 2008

    TEM image0 mM added Ca 2+ ,10% solutions, 2%BLP, pH 7.5, 50 oC

    (Ipsen et al, 2000)

    145.000 x resolution:-lactalbumin frag-

    ments self-assemblesinto tubular struc-tureswhen BLP is added.

    Protease induced gelation of -lactalbumin:Microstructure (3)

    27 Jeanette Otte - November 2008

    TEM image0 mM added Ca 2+ ,10% solutions, 2%BLP, pH 7.5, 50 oC

    (Ipsen et al, 2000)

    How is -La transformed into tubules?

    -LactalbuminCompact, globular,14.2 kDa, 4 nm123 aa, 4 S-S bonds8 Glu, 13 Asp

    ?

    28 Jeanette Otte - November 2008

    1 Ca ++

    Nanotubules20 nm diameterLong, stiff, brittle

    Precipitate/AggregatesSupernatant

    0 min

    BLP-induced aggregates of -La

    RP-HPLC

    Hydrophilicpeptides Hydrophobic

    -La

    29 Jeanette Otte - November 2008

    => Aggregates consist of hydrophobic peptides

    R e t e n t i o n t i m e ( m i n )

    2 0 3 0 4 0 5 0 60R e t e n t i o n t i m e ( m i n )

    2 0 3 0 4 0 50 6 0

    250 min

    350 min

    pept es

    Hydrolysis and aggregation of -LaSize Exclusion Chromatography profiles

    Rt 9.5 min Aggregates

    Cryo-TEMand

    30 Jeanette Otte - November 2008

    1

    2

    3

    1

    2

    3-

    1 = -La2 = large fragments3 = aggregates

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    6/8

    6

    BLP-induced aggregates from 3% and 10% -Lacryo-TEM

    Rt 9.5 min

    31 Jeanette Otte - November 2008 31

    Identification of -La fragments in aggregatesLC-MS

    1 2 5 9 1 0 0 %

    1 1 5 7 5 2 4 %

    3 % -La

    32 Jeanette Otte - November 2008 32

    9 7 9 9

    8 8 1 9

    1 +

    1 0 2 7

    %

    Rt 9.5 min

    Identity of -La fragments

    Measuredmass (Da)

    -La f ragmen t

    11,576 f12-113 cut once11,258 f12-46+50-113

    33 Jeanette Otte - November 2008

    10,275 f12-37+50-11310,118 f26-113 cut once

    9,800 f26-46+50-1138,817 f26-37+50-113

    (Otte et al. 2005, Int. Dairy j. 15:219)

    Primary sequence of -La

    34 Jeanette Otte - November 2008 34= 11.259

    3D structure of -La

    35 Jeanette Otte - November 2008(Chrysina et al. 2000)

    Questions

    1. Which parts from the 3D structure of -La are cleaved off during formation of the 11.3 kDa fragment?

    2. Does that result in exposure of any groups which

    36 Jeanette Otte - November 2008

    could explain aggregation with similar fragments?

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    7/8

    7

    3. Formation of amyloid-like fibrils from -La

    37 Jeanette Otte - November 2008

    Amyloid fibrils

    Associated with neurodegenerative diseases: Parkinsons disease,

    Alzheimers disease, Type II diabetes, prion diseases (e.g.BSE), etc.

    Bind Congo red and Thioflavine T

    Formed by stacking of -sheets

    38 Jeanette Otte - November 2008

    Typically 2-50 nm in diameter ?

    Formation may involve: winding of protofilaments, protofibrils, fibrils,superfibrils

    Unravelling the mechanism:Concentration determines structure

    11.6 kg/mol

    Calcium dependent

    at least 3%

    39 Jeanette Otte - November 2008 39Otte et al, 2004, submitted

    8.8 kg/mol

    Calcium independent

    ~1% and below

    Hydrolysis and aggregation of -La at 1%SEC profiles

    Rt 9.5 min Aggregates Rt 10.5 min

    40 Jeanette Otte - November 2008

    1

    2

    3

    1

    2

    3

    BLP-induced aggregates from 1% -Lacryo-TEM

    41 Jeanette Otte - November 2008

    Identification of -La fragments in aggregatesat 1% -LA

    2 8 8 1 8

    1 % -La

    Rt 10.5 min

    42 Jeanette Otte - November 2008

    Retention time (min)

    30 32 34 36 38 40 42 44 46

    9 8

    1 0 2 7 6

  • 8/14/2019 04 WP Structure Forming Enzymes Jo Handouts

    8/8

    8

    P e a

    k a r e a a t

    2 1 0 n m

    0

    5

    10

    15

    20

    25

    30

    -La11.576 Da fragment

    8.818 Da fragment

    v i n

    f l u o r e s c e n c e

    100

    150 C

    B

    C

    Thioflavinbinding

    Formation of 8.8 kDa

    43 Jeanette Otte - November 2008

    Reaction time (min)

    0 50 100 150 200 250 300 350

    M o

    l a r

    C D a

    t 2 2 0 n m

    -350

    -300

    -250

    -200

    T h i o f

    l a

    0

    50

    D

    CD at 220 nm

    Primary sequence of -La

    44 Jeanette Otte - November 2008 44

    3D structure of -La

    Formation of the8.8 kDa fragment

    45 Jeanette Otte - November 2008 45

    1-25+114-123

    Mechanism of nanotubule and fibril formation

    46 Jeanette Otte - November 2008

    Conclusions

    Gel structures can be formed by limitedproteolysis of WP (like CN) without heating

    Different mechanisms for -Lg and -La

    -Lg aggregates (~0.1 um) consist of manysmall peptides

    47 Jeanette Otte - November 2008

    -La form dimeric aggregates of large fragments(~5 nm). These in turn assemble into tubules(~20 nm)

    Alternatively, at low [Ca 2+ ] or [ -La], they formamyloid-like fibrils (5 nm)

    The significance of these structures is not known