8
Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP. Docente: Tec. Mec. Miguel Eyheralde. 1 Conceptos de Metalurgia General (04) Introducción: Consideramos el conjunto de las operaciones de soldaduras en las que se alcanza la temperatura de fusión de los materiales involucrados, tanto sea del metal base como del metal de aporte que se utilice (en particular es el caso de las soldaduras por arco eléctrico). Veamos las distintas regiones que se generan luego de realizada una soldadura, observadas en una macrografía (pulido fino de un corte transversal de una unión soldada): La Región Fundida: es aquella adonde se produce la fusión y posterior solidificación del metal de aporte (si existe), el cual se “mezcla” con el metal base y genera el “metal de soldadura” La Línea de Fusión: es la interfaz entre la región fundida y la región en estado sólido, en este límite existen zonas con fusión parcial. La Zona Afectada por el Calor (ZAC/ZAT): es la región del metal base que sufre ciclos de calentamiento y enfriamiento debido al aporte térmico de la soldadura. Resulta evidente que las operaciones de soldadura involucran muchos fenómenos metalúrgicos, tales como fusión, solidificación, difusión y transformaciones de fases en el estado sólido, entre otros. Estos fenómenos influyen en las propiedades de las uniones soldadas, y si no son conocidos y controlados adecuadamente, pueden causar una serie de problemas tales como fisuras, menor resistencia a la tensión o al impacto que las especificadas, resistencia a la corrosión inferior a la considerada en los cálculos, etc. Todos estos problemas pueden ser evitados o resueltos si se comprenden los principios metalúrgicos asociados con las practicas y operaciones de soldadura. Metalurgia: La metalurgia puede ser definida como la ciencia, tecnología y arte de trabajar los metales, desde su obtención a partir de los minerales hasta la fabricación de los productos finales. También estudia la producción de aleaciones, el control de calidad de los procesos vinculados así como el estudio de procesos de control de la corrosión. El campo de estudio de la metalurgia es muy amplio y tiene diferentes áreas de especialización, citemos alguna de ellas tales como: Metalurgia física: Esta ciencia estudia las propiedades, estructura, comportamiento y composición de los metales, así como su transformación orientada a la producción de productos finales. Metalurgia mecánica: Es una disciplina que se dedica al estudio y comprensión de los fenómenos de esfuerzo y deformación de los cuerpos metálicos sólidos. Sus principios y teorías son empleados para el diseño, procesamiento y evaluación de metales.

04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

  • Upload
    votuong

  • View
    247

  • Download
    5

Embed Size (px)

Citation preview

Page 1: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

1

Conceptos de Metalurgia General (04)

Introducción:

Consideramos el conjunto de las operaciones de soldaduras en las que se alcanza la temperatura de fusión de los materiales involucrados, tanto sea del metal base como del metal de aporte que se utilice (en particular es el caso de las soldaduras por arco eléctrico). Veamos las distintas regiones que se generan luego de realizada una soldadura, observadas en una macrografía (pulido fino de un corte transversal de una unión soldada):

La Región Fundida: es aquella adonde se produce la fusión y posterior solidificación del metal de aporte (si existe), el cual se “mezcla” con el metal base y genera el “metal de soldadura” La Línea de Fusión: es la interfaz entre la región fundida y la región en estado sólido, en este límite existen zonas con fusión parcial. La Zona Afectada por el Calor (ZAC/ZAT): es la región del metal base que sufre ciclos de calentamiento y enfriamiento debido al aporte térmico de la soldadura. Resulta evidente que las operaciones de soldadura involucran muchos fenómenos metalúrgicos, tales como fusión, solidificación, difusión y transformaciones de fases en el estado sólido, entre otros. Estos fenómenos influyen en las propiedades de las uniones soldadas, y si no son conocidos y controlados adecuadamente, pueden causar una serie de problemas tales como fisuras, menor resistencia a la tensión o al impacto que las especificadas, resistencia a la corrosión inferior a la considerada en los cálculos, etc. Todos estos problemas pueden ser evitados o resueltos si se comprenden los principios metalúrgicos asociados con las practicas y operaciones de soldadura.

Metalurgia:

La metalurgia puede ser definida como la ciencia, tecnología y arte de trabajar los metales, desde su obtención a partir de los minerales hasta la fabricación de los productos finales. También estudia la producción de aleaciones, el control de calidad de los procesos vinculados así como el estudio de procesos de control de la corrosión. El campo de estudio de la metalurgia es muy amplio y tiene diferentes áreas de especialización, citemos alguna de ellas tales como: Metalurgia física: Esta ciencia estudia las propiedades, estructura, comportamiento y composición de los metales, así como su transformación orientada a la producción de productos finales. Metalurgia mecánica: Es una disciplina que se dedica al estudio y comprensión de los fenómenos de esfuerzo y deformación de los cuerpos metálicos sólidos. Sus principios y teorías son empleados para el diseño, procesamiento y evaluación de metales.

Page 2: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

2

Metalurgia adaptativa: En esta disciplina se realizan pruebas físicas sobre especimenes, que permiten determinar el desempeño o falla del elemento en análisis. La caracterización microestructural de los metales y sus aleaciones, permitirán definir sus posibles usos y aplicaciones. Metalurgia Extractiva: Es la tecnología de la extracción de metales a partir de sus menas y la refinación de los mismos para su posterior tratamiento (se dice que un mineral es mena de un metal cuando mediante minería es posible extraer ese mineral de un yacimiento y luego mediante metalurgia obtenerlo). Metalurgia de la soldadura: No se la puede considerar como una parte de la metalurgia general ni, por ejemplo, de la metalurgia física, sino como un área completa de estudio de la metalurgia, desde un punto de vista especializado en los fenómenos asociados específicamente con las operaciones, procesos y practicas de soldadura. Existen algunos principios que resultan claves para comprender los fenómenos que ocurren durante las operaciones de soldadura, los cuales debemos comprender para poder controlar los cambios asociados con tales fenómenos. Esto nos permitirá obtener uniones soldadas con las propiedades y calidad especificadas y requeridas.

Conceptos Metalúrgicos Básicos, Cristalografía.

Las propiedades de los metales y sus aleaciones dependen de sus estructuras metalúrgicas (las que pueden examinarse por medio del microscopio) y de aspectos submicroscopicos, tales como los patrones geométricos en que los átomos están dispuestos en los metales; Por tanto el estudio de la metalurgia comienza necesariamente con la descripción de estos patrones. Estados de agregación de la materia La materia ordinaria existe en tres estados de agregación: gas, líquido, y sólido. La diferencia entre estos estados radica principalmente en la movilidad de los átomos, la separación entre ellos y el orden (o desorden) con que se encuentran dispuestos en cada uno de los casos. En los gases existe gran movilidad debido a que la separación entre los átomos es relativamente grande, de manera que estos interactúan con gran desorden, moviéndose libremente. En el estado sólido, en cambio, los átomos están dispuestos de manera ordenada, ocupando posiciones fijas, conformando estructuras definidas. La distancia entre un átomo y el otro es más reducida (con respecto a los otros estados) y su movilidad es muy limitada. En el estado líquido las moléculas (grupos de más de un átomo) se mueven más lentamente que en los gases, las fuerzas de atracción moleculares son capaces de mantenerlas juntas dentro de un volumen definido. Sin embargo, el movimiento molecular es lo bastante rápido como para provocar que estas moléculas no puedan fijarse dentro de posiciones definidas como sucede en los sólidos.

Si un sólido se forma rápidamente (por ejemplo, cuando un líquido se enfría muy rápido), sus átomos o moléculas no tienen tiempo de alinearse por sí mismos y pueden quedar fijos en posiciones distintas a las de un cristal ordenado. El sólido así formado se llama amorfo. Los sólidos amorfos, como el vidrio, carecen de una distribución tridimensional regular de átomos.

Page 3: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

3

La diferencia principal entre los otros estados y el sólido consiste en que en los sólidos los átomos están dispuestos ordenadamente según modelos geométricos tridimensionales bien definidos. A esta configuración se le llama estructura cristalina o cristal. Un cristal se define como un sólido en el cual las unidades estructurales están ordenadas en un patrón que se repite en tres dimensiones. La forma externa de un cristal es el resultado del arreglo espacial de las partículas que lo forman. Este arreglo tridimensional de partículas se denomina red cristalina o red espacial. Las redes espaciales pueden ser visualizadas como un gran conjunto de puntos ordenados en el espacio, de tal forma que cada uno de ellos presenta una posición idéntica con respecto de los otros puntos colocados a su alrededor. Si cada uno de estos puntos estuviera unido con líneas imaginarias a los puntos más cercanos, se obtendría una configuración geométrica, como por ejemplo la de un cubo que se repetiría en todas la direcciones. La red quedaría definida por el modelo geométrico individual formado al unir con líneas la cantidad mínima de los puntos mas cercanos entre si. Este modelo geométrico individual recibe el nombre de celda unitaria. Una celda unitaria es la unidad estructural repetida de un sólido cristalino. En la siguiente figura se ilustra la red espacial más simple, la cúbica.

Red Espacial Cúbica Simple en la que se indica la celda unitaria.

Las posiciones que ocupan los átomos en las estructuras cristalinas de los sólidos siguen uno de los modelos geométricos de una red espacial, en la que un átomo o grupo de átomos ocupan las posiciones indicadas por los puntos de la red. Aunque existe un número ilimitado de estructuras cristalinas posibles y 14 redes espaciales simples, las estructuras cristalinas más comúnmente encontradas en los metales son: la cúbica centrada en el cuerpo, la cúbica centrada en las caras y la hexagonal compacta. Las siguientes figuras muestran los esquemas de las redes espaciales y las posiciones de los átomos (representados con esferas) en las estructuras cristalinas mencionadas.

Estructura Cristalina Cúbica Centrada en el cuerpo (BCC)

Estructura Cristalina Cúbica Centrada en las Caras (FCC)

Fig. Estructura Cristalina Hexagonal Compacta (HCP)

Modelo atómico de un vidrio.

Page 4: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

4

Ya que muchas propiedades de los metales están determinadas por la estructura cristalina, es conveniente hacer algunas consideraciones adicionales acerca de esta.

Imperfecciones en las redes cristalinas:

Las estructuras cristalinas perfectamente regulares antes descritas son cristales ideales, muy útiles para comprender como están dispuestos los átomos, pero las piezas metálicas están compuestas por cristales reales más o menos perfectos que presentan imperfecciones o discontinuidades. Las imperfecciones se encuentran dentro de la zona de ordenamiento de largo alcance (grano). Vemos como ocurre el proceso de solidificación en la formación de un metal al cambiar de estado, de líquido a sólido; esto nos permitirá comprender que son los llamados “granos”, los cuales serán visibles realizando una metalografía sobre el material, y tendrán un rol muy importante en la determinación de las propiedades finales de los mismos, y en muchos de los problemas asociados a las operaciones de soldadura. Solidificación Es el fenómeno por el cual un sólido cristalino se genera en el seno de un líquido y crece a expensas del mismo. Mayoritariamente las piezas metálicas están elaboradas con materiales que por lo menos en una oportunidad han sufrido la transformación Líquido-Sólido. Veamos las distintas etapas del proceso de solidificación: La solidificación comienza con la aparición de los primeros núcleos, nucleación, lo que implica la formación de una nueva fase sólida en el seno del líquido, con una separación clara de la estructura en formación del resto del material líquido. Los puntos donde aparecen los primeros núcleos pueden ocurrir sobre la superficie de impurezas presentes en el líquido (lo que es corriente en la mayoría de los metales) dado lugar a una "nucleación heterogénea". El proceso continúa con el crecimiento del cristal donde los átomos del líquido se asocian a la superficie sólida del núcleo recién formado. Este crecimiento se da en forma de ramales con forma dendrítica. El proceso de formación y crecimiento de núcleos se da simultáneamente en muchos puntos, por tanto en determinado momento varias columnas de solidificación chocan entre si dando lugar a la formación de una zona donde las estructuras cristalinas tienen una orientación espacial diferente. Esta frontera se la conoce como borde de grano.

Comienzo de la nucleación Crecimiento de los núcleos

Crecimiento de los núcleos Conformación de los bordes de grano

Page 5: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

5

El número de núcleos individuales que se formen originalmente determinarán el tamaño de los granos del material. Esto es un factor importante a tener en cuenta ya que parte de las propiedades del material quedarán determinadas por el tamaño que adquieran los granos del mismo. Tendremos materiales de grano fino y de grano grueso con propiedades diferentes. Veamos algunas imágenes adicionales para ilustrar las ideas planteadas:

Microscopía de barrido electrónico que muestra el desarrollo de dendritas en una aleación en base níquel de un cristal simple.

. Microscopía óptica que muestra el cambio en la formas de los frentes de solidificación a medida que aumenta la velocidad de crecimiento hacia el centro del punto de soldadura (de abajo a arriba) después de que se extingue el arco.

Page 6: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

6

Defectos puntuales en las redes cristalinas: Son discontinuidades de la red que involucran uno o quizá varios átomos. Estos defectos o imperfecciones pueden ser generados en el material mediante el movimiento de los átomos al ganar energía por calentamiento; durante el procesamiento del material; mediante la introducción de impurezas; o intencionalmente a través de las aleaciones.

Vacancia (huecos): se producen cuando falta un átomo en un sitio normal de la red. Las

vacancias se crean en el cristal durante la solidificación a altas temperaturas o como consecuencia de daños por radiación. A temperatura ambiente aparecen muy pocas vacancias, pero éstas se incrementan de manera exponencial conforme aumenta la temperatura.

Átomo intersticial: Se forma un defecto intersticial cuando se inserta un átomo adicional en

una posición normalmente desocupada dentro de la estructura cristalina. Los átomos intersticiales, pueden ser mucho más pequeños que los átomos localizados en los puntos de la red, o mayores que los sitios intersticiales que ocupan; como consecuencia la red circundante aparece comprimida y distorsionada. Los átomos intersticiales como el hidrógeno, a menudo están presentes en forma de impurezas. Como caso particular los átomos de carbono se agregan al hierro para producir acero. Una vez dentro del material, el número de átomos intersticiales en la estructura se mantiene casi constante, incluso al cambiar la temperatura.

Defectos sustitucionales: Se crea un defecto sustitucional cuando se remplaza un átomo por otro de un tipo distinto. El átomo sustitucional permanece en la posición original. Cuando estos átomos son mayores que los normales de la red, los átomos circundantes se comprimen; si son más pequeños, los átomos circundantes quedan en tensión. En cualquier caso, el defecto sustitucional distorsiona la red circundante. Igualmente, se puede encontrar el defecto sustitucional como una impureza o como un elemento aleante agregado deliberadamente. Los defectos puntuales alteran el arreglo perfecto de los átomos circundantes, distorsionando la red a lo largo de quizás cientos de espaciamientos atómicos, a partir del defecto. Una dislocación que se mueva a través de las cercanías generales de un defecto puntual encuentra una red en la cual los átomos no están en sus posiciones de equilibrio. Esta alteración requiere que se aplique un esfuerzo más alto para obligar a que la dislocación venza al defecto, incrementándose así la resistencia del material. En las siguientes figuras se representan estas discontinuidades.

Vacancia (falta de un átomo en la red)

Átomo intersticial (exceso de un átomo en la red)

Átomo de impureza que distorsiona la perfección de la red.

Defectos lineales en las redes cristalinas (dislocaciones) Son imperfecciones lineales en una red que de otra forma sería perfecta. Generalmente se introducen en la red durante el proceso de solidificación del material o al deformarlo. Aunque en todos los materiales hay dislocaciones presentes, son de particular utilidad para explicar la deformación y el endurecimiento de los metales. Podemos identificar dos tipos de dislocaciones: la dislocación de tornillo y la dislocación de borde.

Page 7: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

7

Dislocación de tornillo: La dislocación de tornillo se puede ilustrar haciendo un corte parcial a través de un cristal perfecto, torciéndolo y desplazando un lado del corte sobre el otro la distancia de un átomo.

Dislocaciones de borde: Una dislocación de borde se puede ilustrar haciendo un corte parcial a través de un cristal perfecto, separándolo y rellenando parcialmente el corte con un plano de átomos adicional. El borde inferior de este plano adicional representa la dislocación de borde.

Dislocación en tornillo Dislocación de borde

Importancia de las dislocaciones: a) El proceso de deslizamiento es de particular utilidad para entender el comportamiento mecánico de los metales. En primer término, el deslizamiento explica por qué la resistencia de los metales es mucho menor que el valor predecible a partir del enlace metálico. Si ocurre el deslizamiento, sólo es necesario que se rompa en algún momento una pequeña fracción de todas las uniones metálicas a través de la interfase, por lo que la fuerza requerida para deformar el metal resulta pequeña. b) El deslizamiento le da ductilidad a los metales. Si no hay dislocaciones presentes, una barra de hierro sería frágil; los metales no podrían ser conformados utilizando los diversos procesos, que involucran la deformación para obtener formas útiles, como la forja. c) Es posible controlar las propiedades mecánicas de un metal o aleación al interferir el movimiento de las dislocaciones. Un obstáculo introducido en el cristal impedirá que una dislocación se deslice, a menos que apliquemos mayor fuerza. Si es necesario aplicar una fuerza superior, entonces el metal resulta ser más resistente. Estos obstáculos pueden ser defectos puntuales o borde de grano. d) Se puede prevenir el deslizamiento de las dislocaciones achicando el tamaño de grano o introduciendo átomos de diferente tamaño, a través de una aleación.

Aleaciones

Debido a que los metales puros presentan propiedades mecánicas pobres, rara vez tienen aplicaciones industriales, pero se han desarrollado una gama muy amplia de aleaciones con propiedades específicas adecuadas para aplicaciones industriales particulares. En términos generales, las aleaciones son mezclas de un metal base (presente en mayor proporción) con otro u otros elementos, metálicos o no, los que influyen significativamente en las propiedades de las aleaciones (por ejemplo, sobre la dureza o la resistencia a la corrosión). El metal base (matriz o solvente) de las aleaciones puede formar aleaciones con mezcla (formadas por varias fases) o aleaciones homogéneas (formadas por una sola fase). Se denomina fase a cada parte homogénea de un sistema físicamente diferenciable de los demás al microscopio, no a escala atómica.

Page 8: 04 Metalurgia General - Campus Virtual CETP-UTUcampusvirtual.edu.uy/archivos/mecanica-general/soldadura/04... · Organización: Inspección Especializada de Mecánica General junto

Organización: Inspección Especializada de Mecánica General junto al Coordinador Técnico de la Tecnicatura de Soldadura UTU CETP.

Docente: Tec. Mec. Miguel Eyheralde.

8

Las soluciones sólidas pueden ser dos tipos: • Sustitucionales. • Intersticiales.

En las soluciones sustitucionales, los átomos del material aleante ocupan las posiciones “normales” de los átomos de la matriz en la red cristalina. En las intersticiales, los átomos del aleante se alojan en algún “hueco” o intersticio entre los átomos de la matriz.

Solución sustitucional Solución intersticial

Ejemplos de soluciones sustitucionales son las aleaciones cobre-níquel, y de solución intersticial es el sistema hierro-carbono.

Referencias Bibliográficas:

- “Introducción a la Ciencia de los Materiales”, Instituto de Ensayos de Materiales de Facultad de Ingeniería.

- Materiales de “Carlos Oliva Minilo”.

- Imágenes de dominio público extraídas del World Wide Web (www).