03_Garitte.pdf

Embed Size (px)

Citation preview

  • 8/12/2019 03_Garitte.pdf

    1/35

    Analysis of ground movements inducedby diaphragm wall installation

    Benoit Garitte , Marcos Arroyo and Antonio GensUniversitat Politcnica de Catalunya, Barcelona

    21 st Alert Workshop Program

    Aussois, October the 6th

    2010

  • 8/12/2019 03_Garitte.pdf

    2/35

    MotivationSant Cosme. Movimientos 1

    R e

    b a

    i x d e

    t e r r e s

    P a n

    t a l l a r a m p a c o s t a

    t C C ( m d u

    l s R 1 - R

    5 )

    P a n

    t a l l e s r a m p a c o s

    t a t e

    d i f i c i s

    P a n

    t a l l e s

    f r o n

    t C C ( m d u

    l s 7 1 - 7

    5 )

    P a n

    t a l l e s

    f r o n

    t C C

    ( m d u

    l 7 6 )

    P a n

    t a l l e s - p

    i l a ( m d u

    l s 9 2 - 9

    5 )

    P i l o t s p r o

    t e c c

    i

    J e

    t p r o

    t e c c

    i C C

    J e

    t r a m p a

    ( J e

    t 3 )

    J e

    t 3 ( 1 c o

    l / 2 d i e s )

    Jet 2 (

  • 8/12/2019 03_Garitte.pdf

    3/35

    Outline of the presentation

    Boundary condition for diaphragm wall: implementation andvalidation

    San Cosme station and parameter determination

    Modelling one panel: sensitivity analysis

    Modelling an entire diaphragm wall: comparison with in situ

    measurements

    Conclusions

  • 8/12/2019 03_Garitte.pdf

    4/35

    Implementation of the boundary condition

    Literature review (Ng y Yan, 1998;Gourvenec & Powrie, 1999 ; Schaffer yTriantafyllidis, 2006) :

    Guide wall construction is not takeninto account

    Excavation under bentonite slurrysupport is reproduced by retiring theelements included in the volume of thepanel and applying the hydrostaticpressure (total stresses and null flux)

    Fresh concrete is reproduced by abilinear hydrostatic boundary condition

    Hardening of concrete is reproducedby replacement of the panel volume bynew elements with hard concreteparameters. The bilinear hydrostatic

    boundary condition is desactivated

    Installation

    Function: protection ofexisting structures

    Impermeabilization

    Stiffening

  • 8/12/2019 03_Garitte.pdf

    5/35

    Implementation of the boundary condition

    Gourvenec & Powrie, 1999

    Excavation under bentoniteslurry

    Installation of freshconcrete

    Critical depth

  • 8/12/2019 03_Garitte.pdf

    6/35

    Implementation of the boundary condition

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    -30 -25 -20 -15 -10 -5 0

    Desplazamientos [mm]

    P r o

    f u n

    d i d a

    d [ m ]

    CB (bentonita)G&P (bentonita)CB (24h despus bentonita)CB (hormign)G&P (hormign)CB (24h despus hormign)

    Validation (2D): comparison between CB and G&P simulation results

    Displacement [mm]

    D

    e p

    t h [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    7/35

    Implementation of the boundary condition

    Displacement [mm]

    D e p

    t h [ m

    m ]

    Gourvenec & Powrie, 1999

    Installation of a panel is a

    3D event

    Effects due to theinstallation of variouspanels are not additive

    Correct representation ofthe earth pressurecoefficient is a key issue

  • 8/12/2019 03_Garitte.pdf

    8/35

    Outline of the presentation

    Implementation of the boundary condition in CB and validation

    San Cosme station and parameter determination

    Modelling one panel: sensitivity analysis

    Modelling an entire diaphragm wall and comparison with insitu measurements

    Conclusions

  • 8/12/2019 03_Garitte.pdf

    9/35

    San Cosme station

  • 8/12/2019 03_Garitte.pdf

    10/35

    San Cosme station and parameter determination

    Quaternary alluvial

    Silty clay

    Sand

    Clay

    Gravels

  • 8/12/2019 03_Garitte.pdf

    11/35

    Parameter determination

    DMT (Marchetti Dilatometer)

  • 8/12/2019 03_Garitte.pdf

    12/35

    Parameter determination

    -50.00-45.00-40.00

    -35.00-30.00-25.00-20.00

    -15.00-10.00

    -5.000.00

    0.00 2.00 4.00 6.00 8.00Id

    D e p

    t h [ m

    ]

    DMT01DMT02DMT03DMT04

    A r e n

    a A r c i l l

    L i m o

    DMT (Marchetti Dilatometer)

    Quaternary alluvial

    Silty claySand

    Clay

    Gravels

    C l a y

    S i l t

    S a n

    d

  • 8/12/2019 03_Garitte.pdf

    13/35

    Parameter determination

    DMT (Marchetti Dilatometer)

    -50.00-45.00-40.00-35.00-30.00-25.00-20.00-15.00-10.00

    -5.00

    0.00

    0.0 0.5 1.0 1.5 2.0 2.5 3.0K0

    P r o

    f u n

    d i d

    a d [ m ]

    DMT01 -1

    DMT02 -1

    DMT03 -1

    DMT04 -1

    Ajuste del coefficiente de empuje

    Horizontal stress index Earth pressurecoefficient

    0

    ''h

    v

    K

    =

    Quaternary alluvial

    Silty claySand

    Clay

    Gravels

    D e p

    t h [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    14/35

    Parameter determination

    DMT (Marchetti Dilatometer)

    -50.00-45.00

    -40.00-35.00-30.00-25.00

    -20.00-15.00-10.00-5.00

    0.00

    0 200 400 600 800 1000E [bar]

    D e p t

    h [ m ]

    DMT01DMT02DMT03

    DMT04

    DMT modulus Oedometer modulus (CC): 0.06

    Quaternary alluvial

    Silty claySand

    Clay

    Gravels

  • 8/12/2019 03_Garitte.pdf

    15/35

    Parameter determination

    DMT (Marchetti Dilatometer)

    -50.00-45.00-40.00-35.00-30.00-25.00-20.00-15.00-10.00

    -5.000.00

    0.00 1.00 2.00 3.OCR

    D e p

    t h [ m ]

    Preconsolidation pressure

    Swelling coefficient and friction angle:Mayne (2008): fitting of DMT and CPTutests

    Permeability values were determined othe basis of in situ pump tests (AMPHOS)

  • 8/12/2019 03_Garitte.pdf

    16/35

    Outline of the presentation

    Implementation of the boundary condition in CB and validation

    San Cosme station and parameter determination

    Modelling one panel: sensitivity analysis

    Modelling an entire diaphragm wall and comparison with insitu measurements

    Conclusions

  • 8/12/2019 03_Garitte.pdf

    17/35

    Modelling one panel

    2 5 m

    5 0 m

    Modelling domain for one panel

  • 8/12/2019 03_Garitte.pdf

    18/35

    Modelling one panel

    -25

    -20

    -15

    -10

    -5

    0

    0 100 200 300 400

    tensin [kPa]

    c o

    t a t o p o g r

    f i c a

    [ m ]

    Perfil hidrosttico en labentonitaPerfil hidrosttico en elhormignPerfil en el hormign(emprico)Tensin horizontal (total)

    Stresses [kPa]

    D e p

    t h [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    19/35

    Modelling one panel

    -5

    -4

    -3

    -2

    -1

    0

    1

    0 10 20 30 40Time [hrs]

    S e

    t t l e m e n

    t [ m m

    ]

    Settlement @ 2 mSettlement @ 3 m

    Settlement @ 4 mSettlement @ 5 mSettlement @ 10 mSettlement @ 16 m

    Excavation under bentonite support

    Injection of fresh concrete

    Hardening of the concrete

    -5

    -4

    -3

    -2

    -1

    0

    1

    0 10 20 30 40Time [hrs]

    S e

    t t l e m e n

    t [ m m

    ]

    Settlement @ 2 mSettlement @ 3 m

    Settlement @ 4 mSettlement @ 5 mSettlement @ 10 mSettlement @ 16 m

    Excavation under bentonite support

    Injection of fresh concrete

    Hardening of the concrete

    Settlement evolution

    Di Biagio and Myrvoll, 1973

  • 8/12/2019 03_Garitte.pdf

    20/35

    Modelling one panel

    -25

    -20

    -15

    -10

    -5

    0

    -40 -20 0 20 40desplazamientos [mm]

    P r o

    f u n

    d i d a

    d [ m ]

    t [horas] = 0.13 , profundidad panel [m] = 1t [horas] = 0.26 , profundidad panel [m] = 2t [horas] = 0.39 , profundidad panel [m] = 3t [horas] = 0.52 , profundidad panel [m] = 4t [horas] = 0.65 , profundidad panel [m] = 5t [horas] = 0.90 , profundidad panel [m] = 7t [horas] = 1.16 , profundidad panel [m] = 9t [horas] = 1.42 , profundidad panel [m] = 11t [horas] = 1.55 , profundidad panel [m] = 12t [horas] = 1.81 , profundidad panel [m] = 14t [horas] = 2.06 , profundidad panel [m] = 16t [horas] = 2.32 , profundidad panel [m] = 18t [horas] = 2.58 , profundidad panel [m] = 20t [horas] = 2.84 , profundidad panel [m] = 22t [horas] = 3.10 , profundidad panel [m] = 24t [horas] = 3.23 , profundidad panel [m] = 25t [horas] = 8.23 , antes hormigonadoJusto despues hormigonadot [horas] = 20.23 , antes fraguadoJusto despues fraguadot [horas] = 24t [horas] = 2400

    Convergence of the panel wall

    D e p

    t h [ m m

    ]

    Displacement [mm]

    D e p

    t h [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    21/35

    Modelling one panel

    -14

    -12

    -10

    -8-6

    -4

    -20

    2

    0 10 20 30 40 50Distancia hasta la pared [m]

    a s

    i e n

    t o s

    [ m m

    ]

    t [horas] = 0.13 , profundidad panel [m] = 1

    t [horas] = 0.26 , profundidad panel [m] = 2

    t [horas] = 0.39 , profundidad panel [m] = 3

    t [horas] = 0.52 , profundidad panel [m] = 4

    t [horas] = 0.65 , profundidad panel [m] = 5

    t [horas] = 0.90 , profundidad panel [m] = 7

    t [horas] = 1.16 , profundidad panel [m] = 9

    t [horas] = 1.42 , profundidad panel [m] = 11

    t [horas] = 1.55 , profundidad panel [m] = 12

    t [horas] = 1.81 , profundidad panel [m] = 14

    t [horas] = 2.06 , profundidad panel [m] = 16

    t [horas] = 2.32 , profundidad panel [m] = 18

    t [horas] = 2.58 , profundidad panel [m] = 20

    t [horas] = 2.84 , profundidad panel [m] = 22t [horas] = 3.10 , profundidad panel [m] = 24

    t [horas] = 3.23 , profundidad panel [m] = 25

    t [horas] = 8.23 , antes hormigonado

    Settlement profile

    Distance to wall [m]

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    22/35

    Modelling one panel: sensitivity analysis

    Case 1: base case

    Case 2: bentonite slurry level is 2m below the surface

    Case 3: length of the panel is 6m (instead of 3.6m)

    Case 4: depth of the panel is 35m (instead of 25m)

    Case 5: Critical depth is set to H/5 (instead of H/3)

    Case 6: width of the panel is 1m (instead of 1.2m)

    -6

    -5

    -4-3

    -2

    -10

    1

    0 10 20 30 40Tiempo [hrs]

    a s i e n

    t o s

    [ m m

    ]

    Asientos @ 3 m (caso 1)Asientos @ 3 m (caso 2)Asientos @ 3 m (caso 3)

    Asientos @ 3 m (caso 4)Asientos @ 3 m (caso 5)Asientos @ 3.1 m (caso 6)

    Settlement evolution

    Time [hrs]

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    23/35

    Outline of the presentation

    Implementation of the boundary condition in CB and validation

    San Cosme station and parameter determination

    Modelling one panel: sensitivity analysis

    Modelling an entire diaphragm wall and comparison with insitu measurements

    Conclusions

  • 8/12/2019 03_Garitte.pdf

    24/35

    Modelling an entire diaphragm wall

    p1

    p2

    p3

    p4

    p5 p7

    p6

    R4

    R2

    R1

    R5

    R3

    R e

    b a

    i x d e

    t e r r e s

    P a n

    t a l l a

    r a m p a c o s

    t a t C C ( m d u

    l s R 1 - R

    5 )

    P a n t a

    l l e s r a m p a c o s

    t a t e

    d i f i c i s

    P a n t a

    l l e s

    f r o n

    t C C ( m d u

    l s 7 1 - 7

    5 )

    P a n t a

    l l e s

    f r o n

    t C C ( m d u

    l 7 6 )

    P a n t a

    l l e s - p

    i l a ( m d u

    l s 9 2 - 9

    5 )

    P i l o t s p r o

    t e c c

    i

    J e t p r o

    t e c c

    i C C

    J e

    t r a m p a

    ( J e

    t 3 )

    J e

    t 3 ( 1

    c o

    l / 2 d i e s

    )

    Jet 2 (

  • 8/12/2019 03_Garitte.pdf

    25/35

    Modelling an entire diaphragm wall

    p1

    p2

    p3

    p4

    p5 p7

    p6

    R4

    R2

    R1

    R5

    R3

    -7-6-5-4

    -3-2-101

    1 5 / 1

    1 / 2 0 0

    6

    0 5 / 1 2 /

    2 0 0 6

    2 5 / 1 2 /

    2 0 0 6

    1 4 / 0

    1 / 2 0 0

    7

    0 3 / 0 2 /

    2 0 0 7

    2 3 / 0 2 /

    2 0 0 7

    a s

    i e n t o s

    [ m m

    ]

    Prisma 1 :3m desde panel (medidas)

    Prisma 2 :5.5m desde panel (medidas)

    Prisma 3 :13.5m desde panel (medidas)

    Prisma 4 :23.5m desde panel (medidas)

    Prisma 5 :31m desde panel (medidas)

    Prisma 6 :42.5m desde panel (medidas)

    Prisma 7 :49.5m desde panel (medidas)

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    26/35

    Modelling an entire diaphragm wall

  • 8/12/2019 03_Garitte.pdf

    27/35

    Modelling an entire diaphragm wall

    -6

    -5

    -4

    -3

    -2

    -10

    1

    0 50 100Tiempo [horas]

    a s

    i e n

    t o s

    [ m m

    ]

    Asientos @ 3 m debidos a la ejecucin de dos panel de 3.6m

    Asientos @ 3 m debidos a la ejecucin de un panel de 6m

    Settlement evolution

    Time [hrs]

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    28/35

    Modelling an entire diaphragm wall

    -7

    -6-5-4

    -3-2-101

    1 5 / 1

    1 / 2 0

    0 6

    1 7 / 1

    1 / 2 0

    0 6

    1 9 / 1

    1 / 2 0

    0 6

    2 1 / 1

    1 / 2 0

    0 6

    2 3 / 1

    1 / 2 0

    0 6

    2 5 / 1

    1 / 2 0

    0 6

    2 7 / 1

    1 / 2 0

    0 6

    2 9 / 1

    1 / 2 0

    0 6

    0 1 / 1 2 /

    2 0 0 6

    0 3 / 1 2 /

    2 0 0 6

    0 5 / 1 2 /

    2 0 0 6

    a s

    i e n t o s

    [ m m

    ]

    Prisma 1 :3m desde panel (simulacin)

    Prisma 1 :3m desde panel (medidas)

    Di Biagio and Myrvoll, 1973

    Settlement evolution

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    29/35

    Modelling an entire diaphragm wall

    -7

    -6-5-4

    -3-2-101

    1 5 / 1

    1 / 2 0

    0 6

    0 5 / 1 2 /

    2 0 0 6

    2 5 / 1 2 /

    2 0 0 6

    1 4 / 0

    1 / 2 0

    0 7

    0 3 / 0 2 /

    2 0 0 7

    2 3 / 0 2 /

    2 0 0 7

    a s

    i e n

    t o s

    [ m m

    ]

    Prisma 1 :3m desde panel (simulacin)

    Prisma 1 :3m desde panel (medidas)

    Settlement evolution

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    30/35

    Modelling an entire diaphragm wall

    -3

    -2.5-2

    -1.5

    -1-0.5

    00.5

    1

    1 5 / 1

    1 / 2 0

    0 6

    1 7 / 1

    1 / 2 0

    0 6

    1 9 / 1

    1 / 2 0

    0 6

    2 1 / 1

    1 / 2 0

    0 6

    2 3 / 1

    1 / 2 0

    0 6

    2 5 / 1

    1 / 2 0

    0 6

    2 7 / 1

    1 / 2 0

    0 6

    2 9 / 1

    1 / 2 0

    0 6

    0 1 / 1 2 /

    2 0 0 6

    0 3 / 1 2 /

    2 0 0 6

    0 5 / 1 2 /

    2 0 0 6

    a s

    i e n

    t o s

    [ m m

    ]

    Prisma 2 :5.5m desde panel (simulacin)

    Prisma 2 :5.5m desde panel (medidas)

    Settlement evolution

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    31/35

    Modelling an entire diaphragm wall

    -5

    -4

    -3

    -2

    -10

    1

    1 5 / 1

    1 / 2 0

    0 6

    0 5 / 1 2 /

    2 0 0 6

    2 5 / 1 2 /

    2 0 0 6

    1 4 / 0

    1 / 2 0

    0 7

    0 3 / 0 2 /

    2 0 0 7

    2 3 / 0 2 /

    2 0 0 7

    a s

    i e n

    t o s

    [ m m

    ]

    Prisma 2 :5.5m desde panel (simulacin)

    Prisma 2 :5.5m desde panel (medidas)

    Settlement evolution

    S e

    t t l e m e n

    t s [ m m

    ]

  • 8/12/2019 03_Garitte.pdf

    32/35

    Modelling an entire diaphragm wall

    -7-6

    -5

    -4-3

    -2

    -10

    1

    0 20 40 60 80Distancia a la pared [m]

    a s

    i e n t o s

    [ m m

    ]

    Simulacin (R1-R2) @ 27/11/2006

    Simulacin (R4) @ 27/11/2006

    Medida @ 12/02/2007 (p1)

    Medidas @ 12/02/2007 (otros prismas)

    Settlement profile

    S e

    t t l e m e n

    t s [ m m

    ]

    Distance to wall [m]

    C l di k

  • 8/12/2019 03_Garitte.pdf

    33/35

    Concluding remarksDiaphragm wall installation in soft soils may produce settlement in its

    neighbourhood. Numerical models may help to quantify and understand theproblem.

    Three settlement phases were distinguished during the installation of a panel:

    Settlement during excavation under bentonite support

    Heave during injection of concrete

    Settlement during hardening of concrete

    Design parameters were classified by order of importance:

    The length of the panel

    The bentonite level during excavation

    The width of the panel

    The depth of the panel3D effects were shown to be very important

    A good agreement between measured and simulated settlements was achieved

    Model limitations: soil-wall interface & concrete hardening

  • 8/12/2019 03_Garitte.pdf

    34/35

    Implementation of the boundary condition

    Fresh concrete: Critical depth

    Lion Yard, Cambridge(Lings et al., 2004)Schad et al., 2007

    Hcrit = H/3

    Hcrit = H/5

  • 8/12/2019 03_Garitte.pdf

    35/35

    Modelling one panel

    Case 1: base caseCase 2: bentonite slurry level is 2m below the surface

    Case 3: length of the panel is 6m (instead of 3.6m)

    Case 4: depth of the panel is 35m (instead of 25m)

    Case 5: Critical depth is set to H/5 (instead of H/3)

    Case 6: width of the panel is 1m (instead of 1.2m)

    -20-18-16-14-12-10

    -8-6-4-20

    0 10 20 30 40 50Distancia hasta la pared [m]

    a s

    i e n t o s

    [ m m

    ]

    t [horas] = 3.23 (caso 1)

    t [horas] = 3.23 (caso 2)

    t [horas] = 3.23 (caso 3)

    t [horas] = 4.35 (caso 4)

    t [horas] = 3.23 (caso 5)t [horas] = 3.23 (caso 6)

    -25

    -20

    -15

    -10

    -5

    0

    -40 -30 -20 -10 0Desplazamiento [mm]

    P r o

    f u n d i d a

    d [ m ] t [horas] = 3.23 , profundidad panel [m] = 25 (caso 1)

    t [horas] = 3.23 , profundidad panel [m] = 25 (caso 2)

    t [horas] = 3.23 , profundidad panel [m] = 25 (caso 3)

    t [horas] = 4.35 , profundidad panel [m] = 35 (caso 4)

    t [horas] = 3.23 , profundidad panel [m] = 25 (caso 5)

    t [horas] = 3.23 , profundidad panel [m] = 25 (caso 6)

    Settlement profile Convergence of the panel wall

    Distance to wall [m]

    S e

    t t l e m

    e n

    t s [ m m

    ]

    Displacement [mm]

    D e p t

    h [ m ]