96
Energy Harvesting Jedes System erfordert ein individuell optimiertes Konzept Linear Technology Bostjan Bitenc, Field Application Engineer © 2011, Linear Technology Corporation Ludwigsburg, 6. Juli 2011

02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Embed Size (px)

Citation preview

Page 1: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Energy Harvesting Jedes System erfordert ein individuell

optimiertes Konzept

Linear Technology

Bostjan Bitenc, Field Application Engineer

© 2011, Linear Technology Corporation

Ludwigsburg, 6. Juli 2011

Page 2: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

2 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 3: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Energy Harvesting – what is it?

3 © 2011, Linear Technology Corporation

Free Energy….

But The Laws of Physics Still Apply !

Page 4: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Energy Harvesting Goals

4 © 2011, Linear Technology Corporation

Charge, supplement or replace batteries in systems where battery use is inconvenient, impractical, expensive or dangerous

Eliminate the need for wires to carry power or to transmit data

Smart wireless sensor networks to monitor and optimize complex industrial processes, remote field and building installations ( e.g. HVAC, light switches )

Various consumer electronic accessory chargers

Harvesting otherwise wasted heat from industrial processes, solar panels, internal combustion engines, etc.

Page 5: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Energy Harvesting Sources

5 © 2011, Linear Technology Corporation

Thermo-Electric Generator or Thermopile (Heat)

Piezoelectric (Motion / Vibration creates strain)

Photovoltaic (Light)

Galvanic (Moisture)

Coil/Magnet (Motion / Vibration / Induction)

Courtesy of TOKO Inc.

Page 6: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Energy Harvesting Sources

Outdoor

Indoor

Piezoelectric

Electrostatic

Magnetic

Man

Machine

GSM

WiFi

Harvested

Power

Potential Up to

0.1 uW/cm2

Up to

10,000 uW/cm2

(10 mW/cm2)

Up to

100,000 uW/cm2

(100 mW/cm2)

Up to

1,000 uW/cm2

(1 mW/cm2)

Energy Harvesting Sources

6 © 2011, Linear Technology Corporation

RF Vibration Thermal Photovoltaic

Page 7: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Where an Energy Harvester Fits in

7 © 2011, Linear Technology Corporation

Remote industrial sensor networks

HVAC monitoring and control

Building automation

Predictive maintenance

Avionics

Automatic/remote metering

Military, Aerospace, Commercial, Medical sensors

“Free” Energy

Source /

Transducer

Power

Conversion /

Energy

Management

Sensors,

A/D,

controller

Wireless

transmitter /

receiver

THE MISSING LINK

Page 8: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

First Think About Your Needs

Source /

Transducer

Power

Conversion

Sensor

Controller

Wireless

XCVR

Sensor Node Power Requirements:

• Supply Voltage: Vs

• Continuous Current: Ic

• Additional Pulsed Current: Ip

• Pulse Duration: tp

• System On Time: ton

• Number of Sequences: N

• Sequence Duty Cycle: DC

Total Energy Bill:

AVGtotalAVG

i

pipioncStotal

total

DCEt

EP

tItIVE

dtIVE

*

)**(*

**

,,

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

P[uW]

8 © 2011, Linear Technology Corporation

Page 9: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Then Think About Your Capabilities

Source /

Transducer

Power

Conversion

Sensor

Controller

Wireless

XCVR

Source Characteristics:

• What is the main energy source parameter for the transducer (ΔT, Flux, Strain, ...)?

• How stable is the energy source over time?

• How does the transducer matches the energy source itself (e.g. TEG size vs. ΔT)?

• How much energy can you derive with the parameters given above?

• What kind of system parameters have influence on the transducer efficiency (e.g. heat vs. efficiency for solar cells)?

• What is the transducer output impedance resp. output voltage and waveform?

Light Flux

10

100

1.000

10.000

0 5 10 15 20 25 30

Voc

(mV)

dT (Deg C)

TEG Open Circuit Voltage vs dT

2" TEG

1.5" TEG

0.625" TEG

9 © 2011, Linear Technology Corporation

Page 10: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

And Then Try to Match Both

Source /

Transducer

Power

Conversion

Sensor

Controller

Wireless

XCVR

Input Power

Output Power

Conversion and Leakage Losses

Voltage Conversion DC or AC

to DC

e.g.

50mV 3.3V

Buffering Source & Load Profile Averaging

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

P[uW]

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120 140 160

PIN[uW]

10 © 2011, Linear Technology Corporation

Page 11: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Load Matching Basics

11 © 2011, Linear Technology Corporation

Pout vs Load Resistance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9 10

Load Resistance (Ohms)

Po

ut

(mW

)

Rsource = 3 Ohms

Rsource = 1 Ohm

Where is the sweet spot for maximum power transfer between Source and Load?

sourceload RR

Back to School Basics:

What is the transferred power at that point?

load

loadsource

INOUT R

RR

VP *

2

loadR

sourceR

Page 12: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Matching Example: TEG

12 © 2011, Linear Technology Corporation

Effect of Rsource on Vin & Pout, for Voc=100mV & Rin=3 Ohms

0.1

1

10

100

1000

10000

1 10 100 1,000

Rsource (Ohms)

Vin

(m

V)

or

Po

ut

(uW

)Pout (uW)

Vin (mV)

RIN : input impedance of the DCDC

Load Matching by decoupling the output load from the source with the harvester

Page 13: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

What if the Impedances doesn‘t match?

13 © 2011, Linear Technology Corporation

Over time decouple output and input:

e.g. Caps/battery to buffer energy

Over source parameter control harvester input power: e.g. Maximum power point control

Storage Cap collects charge during Sensor Idle State.

Acts as low impedance source when Power is needed.

Adjust current to keep the input at the desired voltage.

Effectively raises the input resistance of the Harvester when the load is overdriving the source.

Known as MPPC for Solar Cells.

Aux Cap collects charge before enabling VOUT control

Page 14: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

14 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 15: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Cooling With Peltier Elements

15 © 2011, Linear Technology Corporation

• Peltier elements have for a long time been used for

active cooling

• A temperature difference is created by applying a voltage

Known applications :

• Hotel refrigerators

• Electronics heat sinks

• Cooling of laser diodes

• …

Page 16: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Thermal Harvesting With Peltier Elements

16 © 2011, Linear Technology Corporation

• Doing the opposite, generating a voltage from a

temperature difference is called the Seebeck effect

• Thermo electric generator [ TEG ]

Page 17: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

17 © 2011, Linear Technology Corporation

• Voltage is proportional to temperature difference

• The length and area of each elements sets its basic

properties as thermal and electrical resistance

• The P-N elements are connected in series in a module

• Series connection gives higher voltage (and resistance)

• From thermal point of view, they are connected in

parallel

Thermal Harvesting Using Seebeck Effect

Page 18: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

18 © 2011, Linear Technology Corporation

Thermal Model of a System

Page 19: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Thermo-Electric Model of a System

19 © 2011, Linear Technology Corporation

ΔT=(Thot-Tcold)xRteg/(Rsource+Rteg+Rsink)

Page 20: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

21 © 2011, Linear Technology Corporation

TEG Datasheet Example

Page 21: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

22 © 2011, Linear Technology Corporation

TEG Datasheet Example

Page 22: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

23 © 2011, Linear Technology Corporation

Thermoelectric coolers

• Many parameters needed for optimization not given

• Seebeck voltage not given (Voc as function of temperature)

• Thermal resistance not given

They do however work as TEGs

• Seebeck voltage easily measured

• Thermal resistance can be estimated or measured, even

though more difficult, or simply oversize the heatsink to

make the TEGs thermal resistance neglectable

• Oversizing the TEG gives unpredictable and often poor

results

TEC vs. TEG Datasheets

Page 23: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Manufacturer 15 x 15 mm 20 x 20 mm 30 x 30 mm 40 x 40 mm

CUI Inc (Distributor) CP60133 CP60233 CP60333 CP85438

Ferrotec 9501/031/030 B 9501/071/040 B 9500/097/090 B 9500/127/100 B

Fujitaka FPH13106NC FPH17106NC FPH17108AC FPH112708AC

Kryotherm TGM-127-1.0-0.8 LCB-127-1.4-1.15

Laird Technology PT6.7.F2.3030.W6 PT8.12.F2.4040.TA.W6

Marlow Industries RC3-8-01 RC6-6-01 RC12-8-01LS

Tellurex C2-15-0405 C2-20-0409 C2-30-1505 C2-40-1509

TE Technology TE-31-1.0-1.3 TE-31-1.4-1.15 TE-71-1.4-1.15 TE-127-1.4-1.05

Recommended TEG Part Numbers by Size

TEC ≡ TEG

an N-P pair is called a “couple”

Typical Thermoelectric Cooler (TEC) Module Sizes

24 © 2011, Linear Technology Corporation

Page 24: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

25 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 25: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

What is Piezoelectricity?

26 © 2011, Linear Technology Corporation

Applying mechanical strain to certain solid materials results in energy generation.

Page 26: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

27 © 2011, Linear Technology Corporation

Piezoelectric Energy Harvesting

Piezoelectric materials convert strain (deflection, displacement vibration) into electrical energy

Page 27: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Piezoelectric generators – What’s available?

28 © 2011, Linear Technology Corporation

Page 28: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Piezoelectric generators – What you need to know

29 © 2011, Linear Technology Corporation

• Vibrating generators produce an A/C output voltage.

• Electrical output depends on frequency and acceleration.

• Open circuit voltages may be quite high at high g-levels.

• Output impedances can also be high.

• Physical size of the generator dictates energy produced

and optimum frequency of oscillation.

Page 29: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

30 © 2011, Linear Technology Corporation

Source: Adaptive Energy Corporation

Source: Advanced Cerametrics Corporation

Frequency response must match or power falls off quickly

Piezo generators are easily tuned for 10 - 300Hz resonance and provide µW’s to mW’s of power at 0.1g to 2g acceleration levels

The Importance of Resonance (Natural Frequency)

Page 30: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Vibration Sources

31 © 2011, Linear Technology Corporation

Vibration Source

Acceleration

[m/s^2] g-Level

Frequency

[Hz]

Car engine compartment 12 1.22 200

Car Instrument Panel 3 0.31 13

Base of 3-Axis machine tool 10 1.02 70

Kitchen Blender 6.4 0.65 121

Clothes Dryer 3.5 0.36 121

Door Frame just as door closes 3 0.31 125

Small microwave oven 2.25 0.23 121

HVAC vents in office building 0.2-1.5 0.02 - 0.15 60

Wooden deck with foot traffic 1.3 0.13 385

Bread maker 1.03 0.11 121

External windows (size 2' x 3')

next to busy street 0.7 0.07 100

Notebook computer while CD is

being read 0.6 0.06 75

Washing Machine 0.5 0.05 109

Second story floor of a wood

frame office building 0.2 0.02 100Refrigerator 0.1 0.01 240

Reference: Seminario “RFId: sensors e energy harvesting” – LIUC

Universita Carlo Cattaneo – 5 giugno 2009

Page 31: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Design Example: Vibration Powered Wireless Sensor Node

32 © 2011, Linear Technology Corporation

How can I replace this…

…with this?

Motivation: reduce high maintenance costs

Page 32: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Good News: Application energy/power requirements are low

33 © 2011, Linear Technology Corporation

Typical Application: 3 sensor wireless monitor

Energy requirements: 482uJ total

Transmitting every 10 seconds requires 48.2uW (482uJ / 10s)

Source: Microstrain Corporation

Improving technology → lower power

Page 33: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

How much power can piezo transducers generate ?

34 © 2011, Linear Technology Corporation

Page 34: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Characterization of Available Vibration Energy

35 © 2011, Linear Technology Corporation Source: Mide Corporation

Page 35: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

36 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 36: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Solar Cells – Different Types

37 © 2011, Linear Technology Corporation

Page 37: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Solar Cell – How It Works

38 © 2011, Linear Technology Corporation

Solar cells are basically PN junctions (diodes). Their typical IV curve exhibits fairly constant current dependent on illumination levels

(Do-It-Yourself Method)

Load

Page 38: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Solar Cell Maximum Power Point

39 © 2011, Linear Technology Corporation

In an open circuit (no load current), power is 0.

In a short circuit (no load voltage), power is 0.

In between these extremes there is a “sweet spot” where maximum power is extracted

from the cell.

How do we keep the solar cell in the maximum power

point?

Page 39: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Solar Cells Maximum Power Point And Illumination Intensity

40 © 2011, Linear Technology Corporation

o Light levels can vary by over three orders of magnitude

o Maximum Power Point (MPP) voltage varies vs. illumination intensitiy …

o Maximum Power Point Tracking (MPPT) useful to maximize cell output

o DC/DC converter input current regulation to achieve MPP voltage o … and varies much more

vs. cell temperature

Light Levels vs Time & Place

10 100 1,000 10,000 100,000 1,000,000

Cloudy day in unlit room

Lab bench

Cloudy day in cube

Lab bench top shelf

Sunny day in cube near windows

Cloudy day outside at 5PM

Cloudy day outside at 1PM

Sunny day inside next to window 2PM

Sunny day outside aimed straight up at 10AM

Sunny day outside aimed straight up at 2PM

Sunny day outside aimed at the sun 10AM

Illuminance (Lux)

Page 40: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

MPPC implementation in a power converter

41 © 2011, Linear Technology Corporation

• MPP is the Photovoltaic (PV) cell equivalent of load matching

• For most PV cells, the MPP voltage is ~70 to 80% of the open circuit voltage (Voc)

• Load matching is achieved by regulating the INPUT voltage of the power converter

(output of PV cell) equal to the Maximum Power Point (MPP) voltage of the PV cell.

VMPP

Page 41: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

42 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 42: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Thermal Energy Harvesting Products

43 © 2011, Linear Technology Corporation

LTC3108/-1: Ultra-Low Voltage (20mV) Step-Up converter and Power Manager

• Operates from inputs as low as 20mV

• Alternate Fixed Output Voltages

• Unique Resonant Power converter / Energy Harvester

• Auxiliary LDO

• Manages Energy storage between Reservoir and Main Cout or Batt

• Compact Step-up Transformer

• 3x4mm DFN or GN16 packages

Page 43: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3108 - 20mV Resonant Boost Topology

44 © 2011, Linear Technology Corporation

• 20mV Operation or ~1deg dT if powered from a Peltier Effect Thermal Electric Generator (TEG or TEC)

• LTC proprietary MOSFET makes extreme low voltage possible

• Input-Circuit self-oscillates, resonant step-up circuit

• Built-in Synchronous rectification improves Energy harvesting “yield”

• 1:100 transformer is standard part ( Wuerth, Coilcraft, Cooper Bussmann )

Page 44: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical Resonant Waveforms ( Measurements )

45 © 2011, Linear Technology Corporation

VSW 50mV/div (Vin=50mV)

ISW 20mA/div

VSEC 2V/div

VC1 2V/div

Note: “soft-switching”

Choose transformer ratio based on Vin

-min Vin < 50mV, use 1:100 ratio

- min Vin > 50mV, use 1:50 ratio

- min Vin > 200mV, use 1:20 ratio

Page 45: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical Resonant Waveforms ( Simulation )

46 © 2011, Linear Technology Corporation

LTspice schematic : Typical simulation result :

Page 46: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Output-Voltage Sequencing ( VAUX & VLDO )

47 © 2011, Linear Technology Corporation

• VAUX powers active circuits within

LTC3108 ( e.g. VAUX >2V activates the

synchronous rectifier to improve

efficiency of power conversion ).

after VAUX reaches 2V3

• VLDO fixed 2V2 for low-power µC or

other low power ICs (ILDO ~ 3mA)

ramp up

Page 47: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Output-Voltage Sequencing ( VOUT & CSTORE )

48 © 2011, Linear Technology Corporation

3. COUT is charged up to the programmed

output-voltage; a PGOOD-Signal

indicates when VOUT is within 7.5%

of this voltage.

after VOUT has reached regulation

after VLDO reaches 2V2

4. A capacitor or rechargeable battery

connected to VSTORE stores the

remaining energy. Storage element can

be used to power system in the event

that the input source is lost.

Page 48: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3108 Feature: Harvested Energy Management

49 © 2011, Linear Technology Corporation

• VOUT2 is a switched ON-OFF version of VOUT for sensors that don’t have a SD input

• Harvested energy is preferentially sent to VOUT

• Excess harvested energy is sent to VSTORE

• VSTORE will backfeed VOUT in the event of a power outage

• Charge control block provides all of the intelligence to ensure seamless operation

Page 49: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3108 Voltage Sequencing (Simulation)

50 © 2011, Linear Technology Corporation

Datasheet LTC3108 ( page 11 ) : Simulation result :

Page 50: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3108 Voltage Sequencing (Measurements)

51 © 2011, Linear Technology Corporation

VLDO

VOUT

VSTORE

VIN

Power Up Power Down

o VLDO: 2.2V fixed

o VOUT: 2.35V, 3.3V, 4.1V or 5V

(LTC3108 & LTC3109)

o VOUT: 2.5V, 3.0V, 3.7V, 4.5V

(LTC3108-1)

o VSTORE charges up to 5.25V

Page 51: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3108 Feature: Digital Selection of VOUT

52 © 2011, Linear Technology Corporation

• Eliminates multi-M resistors from the PCB

• Easier manufacturability

• Predictable and stable VOUT

• Other combinations possible with option mask (contact the factory)

Page 52: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Block Diagram of LTC3108

53 © 2011, Linear Technology Corporation

VOUT: Main Output

Charge Control and Prioritizer

VSTORE: Energy Reservoir

VOUT2: Switched VOUT

Digital Vout Select

3mA LDO:

uController power

Rectifier

Compact Step-Up transformer

20mV Vin Source

VAUX: Intermediate Charge storage and IC bias supply

Depletion mode MOSFET

Page 53: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Dave Salerno Artikel

+ LINK

54 © 2011, Linear Technology Corporation

http://cds.linear.com/docs/LT%20Journal/LTJournal_V20N3_Oct10.pdf

Page 54: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical Setup for LTC3108/-1

55 © 2011, Linear Technology Corporation

Uni-polar: Vin > 20mV

TEG

Sensors, µC, RF Link

Page 55: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

TEG Reference Data

56

Remember: Bigger TEG doesn’t always mean more available power!

16 x16 mm

40 x 40 mm

54 x 54 mm

Page 56: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Input Resistance LTC3108

57 © 2011, Linear Technology Corporation

• Rin of the LTC3108 converters is in

the range of 2.5 – 5Ω, it varies with

Vin & transformer ratio

• Traditional TEGs, with a resistance

of 0.5 – 3Ω, provide a good match

to the converter

Sources with much higher source-resistance will provide only very little

power because of source-load-mismatch.

Page 57: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

TEG Thermal Resistance

58 © 2011, Linear Technology Corporation

Thermal connections are important

make sure that

RTEG >> RHS + RS

to get the maximum temperature-

difference at the TEG-Element

Page 58: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3109: Auto Polarity Ultra-Low Voltage Step-Up converter and Power Manager

• Operates from inputs as low as +/- 30mV

• Proprietary Auto-Polarity Architecture

• Unique Resonant Power converter / Energy Harvester

• Auxiliary LDO

• Manages Energy storage between Reservoir and Main Cout or Batt

• Compact Step-up X-former

• 4x4mm QFN or GN20 packages

LTC3109 = LTC3108 with 2 resonant input stages

59 © 2011, Linear Technology Corporation

Page 59: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Block Diagram of LTC3109

60 © 2011, Linear Technology Corporation

Proprietary Ultra-low

voltage AutoPolarity

Architecture

(Patent Pending)

VOUT and Digital

select

Power GOOD

VSTORE: Charge

Storage Reservoir

Switched VOUT

2.2V Ultra-Low Iq LDO

Harvested Energy Manager

Two depletion mode mosfets

Page 60: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical LTC3109 Auto-Polarity Application

61 © 2011, Linear Technology Corporation

o Typical startup voltage of ±30mV

o Operates equally well from either polarity

o Can operate from a low frequency AC input

o Uses two identical transformers

o Same basic control architecture as the LTC3108

Page 61: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical LTC3109 Uni-Polar App

62 © 2011, Linear Technology Corporation

LTC3109 in Uni-Polar Configuration Iout vs Vin

10

100

1,000

10,000

10 100 1,000

Vin (mV)

Iou

t (u

A)

1:100, C1=6.8nF

1:50, C1=33nF

1:20, C1=68nF

Ivout vs Vin Comparison of LTC3108 & LTC3109 (1:100)

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

Vin (mV)

Ivo

ut

(uA

)

LTC3109, uni-polar config

LTC3108

o Can be configured for uni-polar operation

o Typical startup voltage of just 15mV !

o Uses a single transformer

o Generates ~3x the current of the LTC3108 for the same Vin ( by paralleling MOSFETs)

Page 62: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical Setup for LTC3109

63 © 2011, Linear Technology Corporation

Autopolarity: Vin > ±30mV

(or Uni-polar: Vin>15mV)

o Basically 2 x LT3108 in one package

o Uses two resonant step-up cores to process positive and negative voltages

o Second resonant core can be configured for positive input voltage ( 2 x output power + lower Vin startup )

o Designed for low resistance sources (< 5Ω)

Page 63: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3108 & LTC3109 Step-Up Transformers From Coilcraft

64 © 2011, Linear Technology Corporation

Page 64: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

65 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 65: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Specifying a Piezo for a Wireless Sensor Node (WSN)

66 © 2011, Linear Technology Corporation

Answers to the above questions will enable piezo suppliers to provide or design the proper transducer

- Vibration Source Characteristics What is the source vibration frequency ?

What is the min, typ and max acceleration that the WSN must operate under ?

- Application Electrical Characteristics How much energy does the WSN require ?

initial network configuration

steady state sensor measurement and transmission power

How frequently does the WSN transmit ?

sets average operating power

What is the turn-on threshold for the power management device ?

sets the minimum VOC of the piezo at the source frequency and minimum acceleration

- Application Physical Constraints How much area can be dedicated to mounting the piezo element ?

How much height will be allocated for the piezo and its enclosure ?

What type of mounting does the application require ?

What are the environmental conditions (moisture, temperature,…) ?

Page 66: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Converting Harvested Energy into a Regulated Output

67 © 2011, Linear Technology Corporation

Rectification Options:

– Full-bridge

• Piezo current conducts on both phases

• Best for high open circuit voltage conditions

– “Doubler”

• Piezo current conducts on positive phase only

• Best for low open circuit voltages

Step 1: Convert piezo AC output to an unregulated DC (VRECT) supply

Page 67: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

DC/DC Tradeoffs

Conversion Efficiency vs. Quiescent Current

68 © 2011, Linear Technology Corporation

DC/DC Goals:

– Maximize VRECT to VOUT conversion efficiency over input voltage and VOUT load

conditions (Switching Converter)

– Minimize quiescent current (LDO, e.g. LT6656 )

– Key Consideration: Keep the application (VOUT) powered at minimum vibration

levels!

VRECT varies widely with

vibration and load

Applications typically

need a regulated supply

Use or store as much harvested energy as possible Minimize all sources of non-load power consumption

Page 68: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Charge Storage Considerations (1)

69 © 2011, Linear Technology Corporation

Energy Stored at DC/DC input

- PROs

• Can utilize high voltage energy storage (E = ½ *C *V2)

• High voltage ceramic capacitors (low leakage)

• Combine with SuperCaps on the output for extended run times

- CONs

• Higher vibration requirement to achieve high input voltage

• Power from source not optimized by adjusting charge current

3588-1 turns on

too early, -2 solves

this issue by having

A higher ULVO threshold

Page 69: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Charge Storage Considerations (2)

70 © 2011, Linear Technology Corporation

Energy Stored at DC/DC Output

- PROs

• SuperCaps or batteries can be used at low voltages

• Low vibration requirement due to low operating voltage

• Modify charge current to optimize power output from source (MPPT…)

- CONs

• Low voltage energy storage requires larger capacitance

• Long charge times

Page 70: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Start-Up Concerns

71 © 2011, Linear Technology Corporation

Piezo RS is typically

HIGH (10kOhm – 100kOhm+)

DC/DC operating current

is highest at startup

Net Result:

VRECT and VOUT

both stuck LOW!

Page 71: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

One More Problem: Overvoltage

72 © 2011, Linear Technology Corporation

DC/DC’s have

max VIN specs

VOC and VRECT climb at high

vibration levels and low

DC/DC load current

Page 72: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Integrated Solution

LTC3588 Piezoelectric Energy Harvester

73 © 2011, Linear Technology Corporation

Key Features: o Integrated rectifier converts piezo AC output to

DC ( extremely low leakage )

o 500nA UVLO circuit allows input cap to be charged up before DC/DC enabled – ensures reliable startup

o Synchronous step-down DC/DC operates over wide VIN and load current with high efficiency

o Overvoltage shunt protects input – dumps excess energy to GND at VIN > 20V

o 1uA (typ) no load ICC minimizes wasted energy at low vibration levels

Can be RF coupled

Extremely low leakage rectifier

( not possible with discrete

components )

Page 73: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Performance Advantages of Integrated Solution

74 © 2011, Linear Technology Corporation

…this is very hard to do with discrete components !

Page 74: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Typical Startup and Recharge Waveforms

75

Measurement :

3.3V regulator start-up profile

Simulation ( time adjusted ) :

Startup and recharge after load step

Page 75: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Dave Salerno Artikel

+ LINK

76 © 2011, Linear Technology Corporation

http://cds.linear.com/docs/LT%20Journal/LTJournal_V20N1_Apr10.pdf

Page 76: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

77 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 77: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

High Efficiency Solar Energy Harvester

78 © 2011, Linear Technology Corporation

o Synchronous Boost Converter + LDO starts up at 250mV

o Includes Maximum Power Point Control (MPPC), which adjusts

the peak inductor current to maintain Vin at a programmed voltage

o Operates from higher resistance sources than traditional boosts

o Uses burst-mode architecture with variable Ipk and Ivalley

Page 78: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105: Block Diagram Review

79 © 2011, Linear Technology Corporation

Page 80: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105 : Maximum Power Point Control Simplified

81 © 2011, Linear Technology Corporation

simple single resistor programming

diode provides easy temperature compensation

thermally coupled to solar cells,1 diode / solar cell

o Maximum Power Point Control circuit servo’s Vin to equal V(MPPC)

o V(MPPC) = 10uA x R(MPPC)

o Set V(MPPC) = ~ 75% of Voc

Page 81: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Boost Converter without MPPC – Startup Example

82 © 2011, Linear Technology Corporation

Solar Cell is Overloaded and circuit will not start

Page 82: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105 MPP Control Startup Example

83 © 2011, Linear Technology Corporation

Solar Cell is regulated to Max Power Point

½ the peak of the previous example.

Good to add a cap to buffer initial peak. MPPC loop regulates down input current

Vin does not come close to UVLO threshold

Page 83: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105 Typical Wireless Sensor Node Application

84 © 2011, Linear Technology Corporation

SHDN used to stop the LTC3105 switching for a short period of time in order to measure or transmit data.

Page 84: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105 Output Power at Indoor Light Levels

85 © 2011, Linear Technology Corporation

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000

Ou

tpu

t P

ow

er

(uW

)

Lux

161uW

Only ~200 Lux required to meet example application limits with some cells

100 cm²

50 cm²

25 cm²

LTC3105 Max Output Power vs Lux with various Thin Film solar cells

Vout=3.3V, 4 cell in series, approx 25/50/100 cm²

Page 85: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

o LTC3105 boosts the low solar panel output voltage to a higher voltage to allow charging

o LTC4070 shunt battery charger limits the maximum battery voltage to 4.2V

o NTC thermistor reduces the battery float voltage in 100mV steps at high temperatures

o P-FET disconnects the load to prevent damaging the battery from over discharge

Complete Low Power Solar Li-Ion Battery Charger

86 © 2011, Linear Technology Corporation

%

Page 86: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105 Charge Current For Varying Sunlight

Without MPPC

87 © 2011, Linear Technology Corporation

These curves show the results of a reduction in sunlight on the solar panel output

voltage & the LTC3105 charge current. For a 15% drop in sunlight intensity, the

charge current dropped to 0mA. Without maximum power point control, the

LTC3105 boost converter pulled the solar panel voltage very low resulting in zero

output power.

Page 87: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

.

Relative Sunlight Intensity

Solar Panel

Output Current

Solar

Panel

Output

Voltage

LTC3105

Charge

Current

600mA

400mA

200mA

0

60mA

40mA

20mA

0

1V

0.8V

0.6V

0.4V

0.2V

0

100%

Changing Sunlight Intensity Effects on Charge Current

(With Maximum Power Point Control)

Battery Voltage = 3.6V

10 seconds

Ch

arg

e C

urr

en

t (m

A)

So

lar P

an

el O

utp

ut (V

)

100%

Pa

nel

Ou

tpu

t (m

A)

LTC3105 Charge Current For Varying Sunlight

With MPPC

88 © 2011, Linear Technology Corporation

These curves show the results of a reduction in sunlight on the solar panel output

voltage & the LTC3105 charge current. For a 15% drop in sunlight intensity, the

charge current dropped to approximately 50mA. The maximum power point control

prevents the solar panel voltage from dropping below 750mV.

Page 88: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

LTC3105 Energy Harvester

89 © 2011, Linear Technology Corporation

Power

Source

IN

Main

VOUT Auxiliary LDO VOUT

Main

VOUT

GOOD

Flag

Page 89: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Advantages of

Integrated Power Management Solutions

90 © 2011, Linear Technology Corporation

…this is very hard to do with discrete components!

Single IC replaces up 35 discrete components, multiple functions

Predictable and reliable operation in harsh Industrial environments

Integrated MOSFETs optimized for speed and ultra-low Iq

Multi-MΩ Resistors integrated, no manufacturability concerns

Off the shelf Integrated Solutions for all types of practical transducers

Compatible with all types of storage elements

Page 90: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

91 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 91: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

92 © 2011, Linear Technology Corporation

LTC3105: Non-PhotoVoltaic Application Circuit

Power from diode drop voltage

Page 92: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

93 © 2011, Linear Technology Corporation

LTC3108: Non-Thermal Application Circuit

Power from small voltage drop

e.g. interconnection resistance

current

Vdro

p

Page 93: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

94 © 2011, Linear Technology Corporation

LTC3109: Non-Thermal Application Circuit

Power from small AC voltage !

e.g. output of Rogowski coil

Page 94: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

• Photo diode sourced by light fiber ( 3105 )

• Using primary cell to death ( 3105 )

• Charge with galvanic elements ( 3105, 3108 )

e.g. from lemon ( see youtube videos )

• Magnetic field harvesting ( 3588 )

e.g. stray field of transformers

• …

95 © 2011, Linear Technology Corporation

Many More Application Circuits …

It is up to you to find more application areas !

Page 95: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Agenda

96 © 2011, Linear Technology Corporation

Energy Harvesting Basics

• General • Thermal • Vibration • Solar

Energy Harvester Products and Solutions

• Thermal • Vibration • Solar • Other Limited Sources

Summary

Practical Demonstrations

Page 96: 02 Energy-Harvesting - Jedes System Erfordert Ein Individuell Optimiertes Konzept

Summary

What Linear Technology Can Do for You

97 © 2011, Linear Technology Corporation

o Different sources with varying impedances need especially adopted IC‘s

o Each IC is optimized for special sources regarding Conversion Topology

and Input Impedance

o IC‘s are maximized for conversion efficiency to give you the most output

power available from the source !