60
Data Bulletin 0100DB0902R04/11 04/2011 Replaces 0100DB0902, 07/2009 Guide to Low Voltage Transformer Protection and Selective Coordination Retain for future use. © 2011 Schneider Electric All Rights Reserved Introduction Use this guide for selecting transformer primary circuit breaker, secondary circuit breaker and the largest branch circuit breakers for total selective coordination. The circuit breaker selections conform to the NEC Article 450 requirements for transformer protection while providing total selectivity for the circuits. See How to Use this Guide, on page 2, for additional information. Use the Guidelines below for tips on working through systems for selective coordination. NOTE: It is still necessary to perform an engineering study to determine the specific requirements of each system. Guidelines Know your state and municipal code Understand your state and local municipality’s adoption and enforcement regarding the National Electrical Code (NEC). Part of understanding local code adoption and enforcement is understanding the threshold of selective coordination required—0.1s (TCCs) or total, for the full operating range of the protective devices (which typically uses look-up tables). This guide assumes total selective coordination is required. Lighting Panelboard Recommendations Do not feed lighting panelboards from other lighting panelboards unless there is a transformer in between them. Better levels of selective coordination are available with 225 A and larger panelboards. Consider using main lugs panelboards. Bottom-Up Coordination When selectively coordinating a system, work from the loads towards the source(s), coordinate the branch panels first, then the power distribution panels, then the switchboard or switchgear. Sizing Upstream Circuit Breakers The upstream circuit breaker should be at least one frame size larger than the downstream circuit breaker. This may necessitate increasing the size of panelboards and feeder conductors. Very high levels of short circuit selective coordination may be achieved by using high ampere frame electronic trip circuit breakers with low ampere sensors and/or lower ampere rating adjustments. Overlapping Time Current Curves (TCCs) When there is no overlap (at any point) of the TCCs below the available short circuit current at the downstream panel, the circuit breakers are fully coordinated. When there is overlap in the short circuit zone, use the short circuit selective coordination tables in document number 0100DB0501, “Short Circuit Selective Coordination for Low Voltage Circuit Breakers” or

0100 Db 0902

Embed Size (px)

Citation preview

Page 1: 0100 Db 0902

Data Bulletin 0100DB0902R04/1104/2011

Replaces 0100DB0902, 07/2009

Guide to Low Voltage Transformer Protection and Selective CoordinationRetain for future use.

© 2011 Schneider Electric All Rights Reserved ™

Introduction Use this guide for selecting transformer primary circuit breaker, secondary circuit breaker and the largest branch circuit breakers for total selective coordination. The circuit breaker selections conform to the NEC Article 450 requirements for transformer protection while providing total selectivity for the circuits.

See How to Use this Guide, on page 2, for additional information.

Use the Guidelines below for tips on working through systems for selective coordination.

NOTE: It is still necessary to perform an engineering study to determine the specific requirements of each system.

Guidelines

Know your state and municipal code Understand your state and local municipality’s adoption and enforcement regarding the National Electrical Code (NEC). Part of understanding local code adoption and enforcement is understanding the threshold of selective coordination required—0.1s (TCCs) or total, for the full operating range of the protective devices (which typically uses look-up tables). This guide assumes total selective coordination is required.

Lighting Panelboard Recommendations • Do not feed lighting panelboards from other lighting panelboards unless there is a transformer in between them.

• Better levels of selective coordination are available with 225 A and larger panelboards.

• Consider using main lugs panelboards.

Bottom-Up Coordination When selectively coordinating a system, work from the loads towards the source(s), coordinate the branch panels first, then the power distribution panels, then the switchboard or switchgear.

Sizing Upstream Circuit Breakers • The upstream circuit breaker should be at least one frame size larger than the downstream circuit breaker. This may necessitate increasing the size of panelboards and feeder conductors.

• Very high levels of short circuit selective coordination may be achieved by using high ampere frame electronic trip circuit breakers with low ampere sensors and/or lower ampere rating adjustments.

Overlapping Time Current Curves (TCCs) • When there is no overlap (at any point) of the TCCs below the available short circuit current at the downstream panel, the circuit breakers are fully coordinated.

• When there is overlap in the short circuit zone, use the short circuit selective coordination tables in document number 0100DB0501, “Short Circuit Selective Coordination for Low Voltage Circuit Breakers” or

Page 2: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved2

document number 0100DB0604, “Selectivity Guidelines for Square D Panelboards”.

Automatic Transfer Switch (ATS) Withstand Ratings

Make sure automatic transfer switches have adequate withstand ratings.

• It may be necessary to relocate the switch, or

It may be necessary to increase the size of the switch.

Mixing of Overcurrent Protective Devices (OCPD)

• Time-Current Curves (TCC) may be used so long as the fault current does not exceed the instantaneous trip point of the upstream breaker

• OCPD from different manufacturers or different types cannot be mixed if the fault current is outside of the parameters describe above.

Arc Flash Incident Energy • Consider how selective coordination impacts the arc flash Protective Personnel Equipment (PPE) levels.

• It may be possible to reduce arc flash incident energy with Zone Selective Interlocking (ZSI).

Nesting Time-Current Curves The time-current curve of a thermal magnetic circuit breaker can sometimes be nested underneath the time-current curve of an upstream electronic trip circuit breaker.

Circuit Breaker Withstand Capacity Molded case circuit breakers (UL 489) will perform to the following levels:

• LA/LH MC (Mission Critical) circuit breaker—Selectively coordinate up to 22 kA with 120 V Circuit Breakers (most economical)

• D-Frame MC (Mission Critical) circuit breaker - Selectively coordinate up to 30kA with 120V circuit breakers

• PowerPact PG/PK and RG/RK circuit breakers—Selectively coordinate up to 65 kA with 277 V Circuit Breakers

• Masterpact NW circuit breakers—Selectively coordinate up to 100 kA with larger molded case circuit breakers

• Refer to 0100DB0501 for complete, total selectivity tables.

Field Adjustment Do not neglect to properly adjust circuit breakers in the field as all Square D low voltage circuit breakers are shipped from the factory with all but the ampere-rating switch in the lowest position.

Rarely needed, but as a last resort . . . • Change the Upstream Circuit Breaker Type to an Insulated Case Circuit Breaker or a Low Voltage Power Circuit Breaker

• Reduce the voltage if the desired level of selective coordination cannot be achieved using a 480Y/277 Vac panelboard. Consider feeding a 208Y/120 Vac panelboard through a transformer.

• Split up some of the loads and use multiple smaller transformers—avoid feeding a 100 A/208 V panel from another 208 V panel.

Insert Impedance through longer run of wire or higher impedance transformers or reactors.

How To Use This Guide 1. Determine the available fault current on primary side of transformer and choose the appropriate reference table.

a. 35 kA / 18 kA

b. 65 kA

c. 100 kA

2. Locate the transformer size on far left of chart. Options are available up to 225 kVA.

3. Based on the specification requirement for aluminum or copper transformer windings, read the available circuit breaker combinations for

Page 3: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 3

primary, secondary (main), and branch circuit breakers for a selectively coordinated system.

4. Choose the circuit breaker combination that best suits your system requirements.

a. The primary circuit breaker should be selected as the device feeding the transformer, whether in a panelboard or circuit breaker enclosure.

b. The secondary circuit breaker should be selected as the main breaker in the panelboard downstream of the transformer; or optionally, could be mounted in a circuit breaker enclosure to feed a main lugs only panelboard.

c. The branch circuit breakers are listed to show the maximum size that can be applied to a full selectively coordinated system. Additionally, notation is made to present which style of QO(B) circuit breaker is required based on current rating and number of poles.

5. Reference data bulletin 0100DB0501 if additional circuit breaker selections are required upstream from the primary circuit breaker to complete the system. This data bulletin is a comprehensive resource for selectively coordinated circuit breaker combinations within the same voltage system.

Page 4: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved4

Qu

ick

Re

fere

nc

e G

uid

e f

or

Sel

ecti

ve C

oo

rdin

atio

n B

as

ed o

n 3

5 kA

Av

aila

ble

Fa

ult

Cu

rren

t o

n 4

80

Va

c P

rim

ary

Inpu

t Circ

uit B

reak

er

Mai

n C

ircui

t Bre

aker

Bra

nchC

ircui

t Bre

aker

s

Tran

sfor

mer

AB C

D

No

tes

ab

ou

t u

sin

g t

his

Qu

ick

Re

fere

nce

Gu

ide

:

Thi

s ta

ble

is n

ot m

ea

nt

to r

epl

ace

a s

ele

ctiv

e c

oo

rdin

atio

n sy

ste

m s

tudy

. Th

e p

urp

ose

of

this

gui

de

is f

or

act

iviti

es

tha

t occ

ur b

efo

re t

he f

inal

sy

ste

m s

tud

y, s

uch

as

quo

tatio

n a

nd

itera

tive

de

sign

ch

ang

es,

to

incr

eas

e th

e c

ha

nce

of d

evi

ce c

omb

ina

tions

bei

ng

sel

ect

ivel

y co

ord

ina

ted.

The

de

vice

com

bin

atio

ns p

rese

nte

d in

this

gu

ide

re

pre

sen

t a

leve

l of

"to

tal"

sel

ect

ive

co

ord

ina

tion,

wh

ere

th

e d

evi

ces

we

re c

ho

sen

ba

sed

onth

e m

axim

um le

t-th

rou

gh

cu

rre

nt.

NE

C r

eq

uire

me

nts

fo

r tr

an

sfo

rme

r p

rote

ctio

n w

ere

als

o fo

llow

ed

in th

e s

ele

ctio

n o

f th

e d

evi

ce c

om

bin

atio

ns.

Tra

nsf

orm

ers

are

480

V p

rim

ary

with

20

8Y

/12

0V

se

con

dar

y.

Ta

ble

1:S

elec

tive

Co

ord

inat

ion

Dev

ice

Co

mb

inat

ion

s (

35

kA

)

Prim

ary

Circ

uit B

reak

erS

econ

dary

Circ

uit B

reak

er

Bra

nch

Circ

uit B

reak

ers

for

Tot

al S

elec

tive

Coo

rdin

atio

nT

CC

s

Long

Tim

eS

hort

Tim

eLo

ng

Tim

e

Tra

ns-

form

er

Siz

ekV

A

Gen

eral

P

urpo

se

Tra

nsfo

rmer

T

ype

Tra

nsf

orm

er

Cat

alo

g N

umbe

rs

Min

. Im

peda

nce

(%

Z)1

Circ

uit

Bre

aker

F

ram

e

Fra

me

Siz

e /

Rat

ing

A

Am

pere

R

atin

g2

AS

ettin

gD

elay

Set

ting

Del

ayIn

stan

t-an

eous

Circ

uit

Bre

aker

T

ype

(Mai

n)

Fra

me

Siz

e /

Rat

ing

Min

. S

ettin

gsM

in.

Del

ay

Am

pere

R

atin

g2

(A)

Ma

x.

Bra

nch

Siz

e5

(A)

1P1

5–70

A

2P15

–100

A

2P11

0–15

0A

3P15

–150

A

15A

lum

inum

EE

15T

3H4.

8E

G12

535

––

––

–H

D15

0–

–60

30

QO

(B)

QO

(B)

QO

(B)

001

Cop

per

EE

15T

3HC

U4.

6E

G12

535

––

––

–D

-MC

600/

150

(0.5

)(0.

8)8

603

0Q

O(B

)Q

O(B

)–

QO

(B)

005

(No

te a

)

30

Alu

min

umE

E3

0T3H

5.0

EG

125

80–

––

––

D-M

C60

0/15

0(0

.7)(

0.95

)4

100–

125

50

QO

(B)

QO

(B)

–Q

O(B

)0

02(N

ote

b)

EE

30T

3H5.

0H

G15

080

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–12

55

0Q

O(B

)Q

O(B

)–

QO

(B)

002

(No

te b

)

Cop

per

EE

30T

3HC

U5.

0E

G12

580

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–12

55

0Q

O(B

)Q

O(B

)–

QO

(B)

006

(No

te b

)

EE

30T

3HC

U5.

0H

G15

080

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–12

55

0Q

O(B

)Q

O(B

)–

QO

(B)

006

(No

te b

)

45A

lum

inum

EE

45T

3H5.

2D

G60

0/15

010

0(0

.7)(

0.95

)4

70.

29

D-M

C60

0/15

060

0/25

0(0

.9)(

0.93

)(0

.5)(

1)4

125–

150

125–

175

60

QO

(B)

QO

(B)

–Q

O(B

)0

03

Cop

per

EE

45T

3HC

U4.

3D

G60

0/25

010

0(0

.5)(

0.8)

47

0.2

9D

-MC

600/

150

600/

250

(0.9

)(0.

93)

(0.5

)(1)

412

5–15

012

5–17

56

0Q

O(B

)Q

O(B

)–

QO

(B)

007

75

Alu

min

umE

E7

5T3H

3.5

LA/L

H M

C40

020

0–

––

––

D-M

C60

0/25

060

0/40

0(0

.9)(

1)(0

.7)(

0.8)

1622

5–25

022

5–30

010

0Q

O(B

)Q

O(B

)–

QO

(B)

004

(No

te b

)

EE

75T

3H3.

5LA

/LH

MC

400

200

––

––

–LA

-MC

400

––

225–

250

100

QO

(B)

QO

(B)3

–Q

O(B

)40

04(N

ote

b)

Cop

per

EE

75T

3HC

U3.

4LA

/LH

MC

400

200

––

––

–D

-MC

600/

250

600/

400

(0.9

)(1)

(0.7

)(0.

8)16

225–

250

225–

300

100

QO

(B)

QO

(B)

–Q

O(B

)0

08(N

ote

b)

EE

75T

3HC

U3.

4LA

/LH

MC

400

200

––

––

–LA

-MC

400

––

225–

250

100

QO

(B)

QO

(B)3

–Q

O(B

)40

08(N

ote

b)

112.

5A

lum

inum

EE

112

T3H

5.1

LA/L

H M

C40

020

0–

––

––

D-M

C60

0/40

0(0

.8)(

0.95

)16

300–

400

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

010

Cop

per

EE

112T

3HC

U5.

4LA

/LH

MC

400

200

––

––

–D

-MC

600/

400

(0.8

)(0.

95)

1630

0–40

015

0Q

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

H0

13

150

Alu

min

umE

E1

50T

3H5.

9LA

/LH

MC

400

200

––

––

–LA

-MC

400

––

400

100

QO

(B)-

VH

QO

(B)-

VH

–Q

O(B

)0

15(N

ote

b)

EE

150

T3H

5.9

LA/L

H M

C40

020

0–

––

––

D-M

C60

0/60

0(0

.7)(

0.95

)4

400–

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

015

(No

te b

)C

oppe

rE

E15

0T3C

U5.

4LA

/LH

MC

400

200

––

––

–D

-MC

600/

600

(0.7

)(0.

95)

440

0–60

015

0Q

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

H0

17

225

Alu

min

umE

E2

25T

3H6.

5LA

/LH

MC

400

250

––

––

–D

-MC

600/

600

(1)(

1)4

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

016

Cop

per

EE

225T

3HC

U3.

7P

G12

00/4

0032

00.

84

100.

2-IN

OF

FD

-MC

600/

600

(1)(

1)4

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

018

TC

C N

otes

:a.

TC

C s

how

s ov

erla

p be

twe

en th

e se

cond

ary

D-M

C a

nd th

e br

anch

circ

uit b

rea

ker

abov

e th

e in

stan

tane

ous

trip

.b.

Use

d S

KM

"F

unct

ion"

feat

ure

to s

how

two

diff

eren

t prim

ary

circ

uit

brea

ker

choi

ces

on

sam

e T

CC

.1 V

alu

es r

epre

sent

ativ

e of

impe

danc

e va

lues

for

Squ

are

D tr

ansf

orm

ers.

2 A

llow

prim

ary

trip

rat

ing

to in

crea

se to

250

% o

f rat

ed F

LC

(N

EC

450

.4);

se

cond

ary

mai

n tr

ip r

atin

g ca

nnot

exc

eed

125%

of

rate

d F

LC.

3 S

ele

ctiv

e w

ith 2

po

le Q

O(B

) th

roug

h 80

A r

atin

g.4 S

ele

ctiv

e w

ith 3

po

le Q

O(B

) th

roug

h 60

A r

atin

g.5 B

ranc

h ci

rcui

t bre

ake

rs w

ith a

mpe

re r

atin

gs o

f 50%

, or

less

, of t

he D

-MC

ma

in c

ircui

t bre

aker

are

sel

ectiv

e. V

alu

es s

how

n in

thi

s co

lum

n co

rres

pond

to th

e m

inim

um D

-MC

trip

in c

olum

n to

the

left.

AB

CD

Page 5: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved5

Qu

ick

Ref

ere

nce

Gu

ide

for

Se

lect

ive

Co

ord

ina

tio

n B

ase

d o

n 6

5 k

A A

vail

ab

le F

ault

Cu

rre

nt

on

480

Va

c P

rim

ary

Inpu

t Circ

uit B

reak

er

Mai

n C

ircui

t Bre

aker

Bra

nchC

ircui

t Bre

aker

s

Tran

sfor

mer

AB C

D

No

tes

abo

ut

usi

ng

th

is Q

uic

k R

efer

ence

Gu

ide:

Th

is ta

ble

is n

ot

me

ant

to r

ep

lace

a s

ele

ctiv

e c

oord

ina

tion

sys

tem

stu

dy.

Th

e pu

rpo

se o

f th

is g

uid

e is

fo

r a

ctiv

itie

s th

at

occ

ur b

efo

re t

he

fina

l sy

ste

m s

tud

y, s

uch

as

qu

ota

tion

an

d it

era

tive

de

sig

n ch

ang

es,

to in

cre

ase

the

cha

nce

of

devi

ce c

om

bin

atio

ns

be

ing

se

lect

ive

ly c

oo

rdin

ate

d.

Th

e d

evic

e co

mb

ina

tion

s p

rese

nte

d in

th

is g

uid

e r

ep

rese

nt a

leve

l of

"to

tal"

se

lect

ive

coo

rdin

atio

n,

whe

re th

e d

evi

ces

wer

e c

hose

n b

ase

d o

nth

e m

axi

mu

m le

t-th

roug

h c

urr

ent

.

NE

C r

equ

irem

en

ts fo

r tr

an

sfor

me

r p

rote

ctio

n w

ere

als

o fo

llow

ed in

the

sele

ctio

n of

the

de

vice

co

mbi

na

tion

s.

Tra

nsf

orm

ers

are

48

0V

pri

ma

ry w

ith 2

08

Y/1

20V

sec

ond

ary

.

Tab

le2:

Sel

ecti

ve C

oo

rdin

ati

on

Dev

ice

Co

mb

inat

ion

s (6

5 kA

)

Prim

ary

Circ

uit B

reak

erS

econ

dar

y C

ircui

t Bre

aker

Bra

nch

Circ

uit B

reak

ers

for

Tot

al S

elec

tive

Co

ordi

natio

nT

CC

s

Lon

g T

ime

Sho

rt T

ime

Long

Tim

e

Tra

ns-

form

er

Siz

ekV

A

Gen

eral

P

urpo

se

Tra

nsfo

rmer

T

ype

Tra

nsfo

rmer

C

atal

og

Num

bers

Min

. Im

peda

nce

(% Z

)1

Circ

uit

Bre

aker

F

ram

e

Fra

me

Siz

e /

Rat

ing

A

Am

pere

R

atin

g2

AS

ettin

gD

elay

Set

ting

De

lay

Inst

ant-

aneo

us

Circ

uit

Bre

aker

T

ype

(Mai

n)

Fra

me

Siz

e /

Rat

ing

Min

. S

ettin

gsM

in.

Del

ay

Am

pere

R

atin

g2

(A)

Max

. B

ranc

h S

ize5

(A)

1P15

–70

A

2P15

–100

A

2P11

0–1

50A

3P15

–150

A

15A

lum

inum

EE

15T

3H4.

8E

J1

2535

––

––

–H

D15

0–

–60

30Q

O(B

)Q

O(B

)Q

O(B

)02

1

Cop

per

EE

15T

3HC

U4.

6E

J1

2535

––

––

–D

-MC

600/

150

(0.5

)(0.

8)8

6030

QO

(B)

QO

(B)

–Q

O(B

)02

5(N

ote

a)

30

Alu

min

umE

E30

T3H

5.0

EJ

125

80–

––

––

D-M

C60

0/15

0(0

.7)(

0.95

)4

100–

125

50Q

O(B

)Q

O(B

)–

QO

(B)

022

(Not

e b

)

EE

30T

3H5.

0H

J1

5080

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–12

550

QO

(B)

QO

(B)

–Q

O(B

)02

2(N

ote

b)

Cop

per

EE

30T

3HC

U5.

0E

J1

2580

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–12

550

QO

(B)

QO

(B)

–Q

O(B

)02

6(N

ote

b)

EE

30T

3HC

U5.

0H

J1

5080

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–12

550

QO

(B)

QO

(B)

–Q

O(B

)02

6(N

ote

b)

45A

lum

inum

EE

45T

3H5.

2D

J60

0/1

5010

0(0

.7)(

0.95

)8

70

.29

D-M

C60

0/15

060

0/25

0(0

.9)(

0.93

)(0

.5)(

1)4

125–

150

125–

175

60Q

O(B

)Q

O(B

)–

QO

(B)

023

Cop

per

EE

45T

3HC

U4.

3D

J60

0/2

5010

0(0

.5)(

0.8)

87

0.2

9D

-MC

600/

150

600/

250

(0.9

)(0.

93)

(0.5

)(1)

412

5–15

012

5–17

560

QO

(B)

QO

(B)

–Q

O(B

)02

7

75

Alu

min

umE

E75

T3H

3.5

DJ

600

/400

160

(0.5

)(0.

8)8

70

.29

D-M

C60

0/25

0(0

.9)(

1)16

225–

300

100

QO

(B)

QO

(B)

–Q

O(B

)02

4(N

ote

b)

EE

75T

3H3.

5D

J60

0/4

0016

0(0

.5)(

0.8)

87

0.2

9LA

-MC

400

––

225–

250

100

QO

(B)

QO

(B)3

–Q

O(B

)402

4(N

ote

b)

Cop

per

EE

75T

3HC

U3.

4D

J60

0/4

0016

0(0

.5)(

0.8)

87

0.2

9D

-MC

600/

250

600/

400

(0.9

)(1)

(0.7

)(0.

8)16

225–

250

225–

300

100

QO

(B)

QO

(B)

–Q

O(B

)02

8(N

ote

b)

EE

75T

3HC

U3.

4D

J60

0/4

0016

0(0

.5)(

0.8)

87

0.2

9LA

-MC

400

––

225–

250

100

QO

(B)

QO

(B)3

–Q

O(B

)402

8(N

ote

b)

112

.5A

lum

inum

EE

112T

3H5.

1D

J60

0/4

0020

0(0

.5)(

1)8

70

.29

D-M

C60

0/40

0(0

.8)(

0.95

)16

300–

400

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

030

Cop

per

EE

112T

3HC

U5.

4D

J60

0/4

0020

0(0

.5)(

1)8

70

.29

D-M

C60

0/40

0(0

.8)(

0.95

)16

300–

400

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

033

150

Alu

min

umE

E15

0T3H

5.9

DJ

600

/600

240

(0.5

)(0.

8)8

70

.29

D-M

C60

0/60

0(0

.7)(

0.95

)4

400–

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

031

Cop

per

EE

150T

3CU

5.4

DJ

600

/600

240

(0.5

)(0.

8)8

70

.39

D-M

C60

0/60

0(0

.7)(

0.95

)4

400–

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

034

225

Alu

min

umE

E22

5T3H

6.5

PJ

1200

/400

320

0.8

48

0.2

-IN

12D

-MC

600/

600

(1)(

1)4

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

036

Cop

per

EE

225T

3HC

U3.

7P

J12

00/4

0032

00.

84

80

.2-I

NO

FF

D-M

C60

0/60

0(1

)(1)

460

015

0Q

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

H03

8T

CC

No

tes:

a. T

CC

sho

ws

over

lap

bet

wee

n th

e se

cond

ary

D-M

C a

nd t

he b

ranc

h ci

rcui

t br

eake

r ab

ove

the

inst

anta

neou

s tr

ip.

b.

Use

d S

KM

"F

unct

ion"

feat

ure

to s

how

tw

o di

ffere

nt p

rimar

y ci

rcui

t bre

aker

cho

ices

on

sam

e T

CC

.1 V

alue

s re

pres

enta

tive

of im

peda

nce

valu

es fo

r S

quar

e D

tran

sfor

mer

s.2 A

llow

prim

ary

trip

ra

ting

to in

crea

se to

250

% o

f rat

ed F

LC (

NE

C 4

50.4

); s

econ

dary

ma

in tr

ip r

atin

g ca

nnot

exc

eed

125

% o

f rat

ed F

LC.

3 S

elec

tive

with

2 p

ole

QO

(B)

thro

ugh

80A

rat

ing

.4 S

elec

tive

with

3 p

ole

QO

(B)

thro

ugh

60A

rat

ing

.5 B

ranc

h ci

rcui

t bre

aker

s w

ith a

mpe

re r

atin

gs o

f 50%

, or

less

, of t

he D

-MC

mai

n ci

rcui

t bre

ake

r ar

e se

lect

ive.

V

alue

s sh

own

in t

his

colu

mn

corr

esp

ond

to th

e m

inim

um D

-MC

trip

in c

olum

n to

the

left.

AB

CD

Page 6: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved6

Qu

ick

Re

fere

nc

e G

uid

e f

or

Sel

ecti

ve C

oo

rdin

atio

n B

as

ed o

n 1

00 k

A A

vail

able

Fa

ult

Cu

rre

nt

on

48

0 V

ac P

rim

ary

Inpu

t Circ

uit B

reak

er

Mai

n C

ircui

t Bre

aker

Bra

nchC

ircui

t Bre

aker

s

Tran

sfor

mer

AB C

D

No

tes

ab

ou

t u

sin

g t

his

Qu

ick

Re

fere

nce

Gu

ide

:

Thi

s ta

ble

is n

ot m

ea

nt

to r

epl

ace

a s

ele

ctiv

e c

oo

rdin

atio

n sy

ste

m s

tudy

. Th

e p

urp

ose

of

this

gui

de

is f

or

act

iviti

es

tha

t occ

ur b

efo

re t

he f

inal

sy

ste

m s

tud

y, s

uch

as

quo

tatio

n a

nd

itera

tive

de

sign

ch

ang

es,

to

incr

eas

e th

e c

ha

nce

of d

evi

ce c

omb

ina

tions

bei

ng

se

lect

ivel

y co

ord

ina

ted.

The

de

vice

com

bin

atio

ns p

rese

nte

d in

this

gu

ide

re

pre

sen

t a

leve

l of

"to

tal"

sel

ect

ive

co

ord

ina

tion,

wh

ere

th

e d

evi

ces

we

re c

ho

sen

ba

sed

onth

e m

axim

um le

t-th

rou

gh

cu

rre

nt.

NE

C r

eq

uire

me

nts

fo

r tr

an

sfo

rme

r p

rote

ctio

n w

ere

als

o fo

llow

ed

in th

e s

ele

ctio

n o

f th

e d

evi

ce c

om

bin

atio

ns.

Tra

nsf

orm

ers

are

480

V p

rim

ary

with

20

8Y

/12

0V

se

con

dar

y.

Ta

ble

3:S

elec

tive

Co

ord

inat

ion

Dev

ice

Co

mb

inat

ion

s (

100

kA

)

Prim

ary

Circ

uit B

reak

er

Se

cond

ary

Circ

uit B

reak

erB

ranc

h C

ircui

t Bre

aker

s fo

r T

otal

Sel

ect

ive

Coo

rdin

atio

nT

CC

s

Long

Tim

eS

hort

Tim

eLo

ng T

ime

Tra

ns-

form

er

Siz

ekV

A

Gen

eral

P

urpo

se

Tra

nsfo

rmer

T

ype

Tra

nsfo

rmer

C

atal

og

Num

bers

Min

. Im

peda

nce

(% Z

)1

Circ

uit

Bre

aker

F

ram

e

Fra

me

Siz

e /

Rat

ing

A

Am

pere

R

atin

g2

AS

ettin

gD

ela

yS

ettin

gD

elay

Inst

ant-

aneo

us

Circ

uit

Bre

ake

r T

ype

(Mai

n)

Fra

me

Siz

e /

Rat

ing

Plu

g

Min

. S

ettin

gsM

in.

Del

ay

Am

pere

R

atin

g2

(A)

Max

. B

ranc

h S

ize5

(A)

1P1

5–70

A

2P15

–100

A

2P1

10–1

50A

3P15

–150

A

30A

lum

inum

EE

30T

3H5.

0H

L15

080

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–1

2550

QO

(B)

QO

(B)

–Q

O(B

)04

2C

oppe

rE

E30

T3

H_C

u5.

0H

L15

080

––

––

–D

-MC

600/

150

(0.7

)(0.

95)

410

0–1

2550

QO

(B)

QO

(B)

–Q

O(B

)04

6

45A

lum

inum

EE

45T

3H5.

2D

L60

0/15

010

0(0

.7)(

0.9

5)8

70.

29

D-M

C60

0/15

060

0/25

0(0

.9)(

0.93

)(0

.5)(

1)4

125

–150

125

–175

60Q

O(B

)Q

O(B

)–

QO

(B)

043

Cop

per

EE

45T

3H

_Cu

4.3

DL

600/

250

100

(0.5

)(0

.8)

87

0.2

9D

-MC

600/

150

600/

250

(0.9

)(0.

93)

(0.5

)(1)

412

5–1

5012

5–1

7560

QO

(B)

QO

(B)

–Q

O(B

)04

7

75

Alu

min

umE

E75

T3H

3.5

DL

600/

400

160

(0.5

)(0

.8)

87

0.2

9LA

-MC

400

––

225

–300

100

QO

(B)

QO

(B)3

–Q

O(B

)404

4(N

ote

b)

EE

75T

3H3.

5D

L60

0/40

016

0(0

.5)(

0.8

)8

70.

29

D-M

C60

0/25

060

0/40

0(0

.9)(

1)(0

.7)(

0.8)

1622

5–2

5022

5–3

0010

0Q

O(B

)Q

O(B

)–

QO

(B)

044

(Not

e b)

Cop

per

EE

75T

3H

_Cu

3.4

DL

600/

400

160

(0.5

)(0

.8)

87

0.2

9LA

-MC

400

––

225

–300

100

QO

(B)

QO

(B)3

–Q

O(B

)404

8(N

ote

b)

EE

75T

3H

_Cu

3.4

DL

600/

400

160

(0.5

)(0

.8)

87

0.2

9D

-MC

600/

250

600/

400

(0.9

)(1)

(0.7

)(0.

8)16

225

–250

225

–300

100

QO

(B)

QO

(B)

–Q

O(B

)04

8(N

ote

b)

112.

5A

lum

inum

EE

112

T3H

5.1

DL

600/

400

200

(0.5

)(1)

87

0.2

9D

-MC

600/

400

(0.8

)(0.

95)

1630

0–4

0015

0Q

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

H05

0C

oppe

rE

E11

2T3

H_C

u5.

4D

L60

0/40

020

0(0

.5)(

1)8

70.

29

D-M

C60

0/40

0(0

.8)(

0.95

)16

300

–400

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

053

150

Alu

min

umE

E15

0T

3H5.

9D

L60

0/60

024

0(0

.5)(

0.8

)8

70.

29

D-M

C60

0/60

0(0

.7)(

0.95

)4

400

–600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

051

Cop

per

EE

150T

3_C

u5.

4D

L60

0/60

024

0(0

.5)(

0.8

)8

70.

39

D-M

C60

0/60

0(0

.7)(

0.95

)4

400

–600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

054

225

Alu

min

umE

E22

5T

3H6.

5P

L12

00/4

0032

00.

84

80.

2-IN

12D

-MC

600/

600

(1)(

1)4

600

150

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

QO

(B)-

VH

056

Cop

per

EE

225T

3H

_Cu

3.7

PL

1200

/400

320

0.8

48

0.2-

INO

FF

D-M

C60

0/60

0(1

)(1)

46

0015

0Q

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

HQ

O(B

)-V

H05

8T

CC

Not

es:

a. T

CC

sho

ws

ove

rlap

betw

een

the

seco

ndar

y D

-MC

and

the

bran

ch c

ircui

t bre

aker

abo

ve th

e in

stan

tane

ous

trip

.b.

Use

d S

KM

"F

unct

ion"

feat

ure

to s

how

two

diffe

ren

t prim

ary

circ

uit b

rea

ker

choi

ces

on s

am

e T

CC

.1 V

alu

es r

epre

sent

ativ

e of

impe

danc

e va

lues

for

Squ

are

D tr

ansf

orm

ers.

2 A

llow

prim

ary

trip

rat

ing

to in

crea

se to

250

% o

f rat

ed F

LC

(N

EC

450

.4);

se

cond

ary

mai

n tr

ip r

atin

g ca

nnot

exc

eed

125%

of

rate

d F

LC.

3 S

ele

ctiv

e w

ith 2

po

le Q

O(B

) th

roug

h 80

A r

atin

g.4 S

ele

ctiv

e w

ith 3

po

le Q

O(B

) th

roug

h 60

A r

atin

g.5 B

ranc

h ci

rcui

t bre

ake

rs w

ith a

mpe

re r

atin

gs o

f 50%

, or

less

, of t

he D

-MC

ma

in c

ircui

t bre

aker

are

sel

ectiv

e. V

alu

es s

how

n in

thi

s co

lum

n co

rres

pond

to th

e m

inim

um D

-MC

trip

in c

olum

n to

the

left.

AB

CD

Page 7: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 7

Page 8: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved8

Page 9: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 9

Page 10: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved10

Page 11: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 11

Page 12: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved12

Page 13: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 13

Page 14: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved14

Page 15: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 15

Page 16: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved16

Page 17: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 17

Page 18: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved18

Page 19: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 19

Page 20: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved20

Page 21: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 21

Page 22: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved22

Page 23: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 23

Page 24: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved24

Page 25: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 25

Page 26: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved26

Page 27: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 27

Page 28: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved28

Page 29: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 29

Page 30: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved30

Page 31: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 31

Page 32: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved32

Page 33: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 33

Page 34: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved34

Page 35: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 35

Page 36: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved36

Page 37: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 37

Page 38: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved38

Page 39: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 39

Page 40: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved40

Page 41: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 41

Page 42: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved42

Page 43: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 43

Page 44: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved44

Page 45: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 45

Page 46: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved46

Page 47: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 47

Page 48: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved48

Page 49: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 49

Page 50: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved50

Page 51: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 51

Page 52: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved52

Page 53: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 53

Page 54: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved54

Page 55: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 55

Page 56: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved56

Page 57: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 57

Page 58: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

© 2011 Schneider Electric All Rights Reserved58

Page 59: 0100 Db 0902

0100DB0902R04/11 Guide to Low Voltage Transformer Protection and Selective Coordination04/2011 Data Bulletin

© 2011 Schneider Electric All Rights Reserved 59

Page 60: 0100 Db 0902

Guide to Low Voltage Transformer Protection and Selective Coordination 0100DB0902R04/11Data Bulletin 04/2011

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

Square D™ and Schneider Electric™ are trademarks or registered trademarks of Schneider Electric. Other trademarks used herein are the property of their respective owners.

Schneider Electric USA, Inc.3700 Sixth Street SWCedar Rapids, IA 52404 USA1-888-SquareD (1-888-778-2733)www.schneider-electric.us

© 2011 Schneider Electric All Rights Reserved60