5
* 2016.11.14 受付 ** 慶應義塾大学大学院理工学研究科開放環境科学専攻 〒223-8522 神奈川県横浜市港北区日吉 3-14-1 TEL: (045)566-1575 FAX: (045)566-1575 E-mail: [email protected] *** 慶應義塾大学理工学部応用化学科 特集号論文推薦原稿 水平摺動するノズルからの微細気泡生成 * Smaller Bubble Formation from a Horizontally Oscillating Nozzle 村 上 大地郎 ** 寺 坂 宏 一 *** 藤 岡 沙都子 *** MURAKAMI Daijiro TERASAKA Koichi FUJIOKA Satoko Abstract Fine bubbles are used for cleaning system, separating process, food industry and so on. However, commercially available devices for fine bubble generation cannot be applied for particle dispersion liquid because they need liquid pumps and particles are accumulated on their systems. Moreover, the bubble diameter cannot be controlled in those devices. The uniformed and controlled bubble diameter is important for a reasonable industrial device design. Therefore, in this study, a novel method for fine bubble generation without liquid circulation was developed. A horizontally oscillating micro-nozzle was used to make bubbles small. The effect of the gas flow rate, the oscillating frequency, and the oscillation amplitude on the average bubble diameter was investigated experimentally. Moreover, visualization and quantification of liquid motion around the oscillating nozzle was carried out in this study. It was clarified that the liquid viscous force due to the relative velocity of the nozzle motion to the liquid motion enhances the bubble detachment from the nozzle in this method. Keywords: Fine bubble, Oscillating Micro-nozzle, Bubble formation, Bubble dispersion 1. 緒 言 気液接触装置はガス吸収器、気泡塔、バイオリ アクターなど多くの工業装置に利用されており、 気液接触面積はプロセス性能に大きく影響する。 気液間の物質移動の向上には気泡の微細化や合 体防止、工業装置設計には気泡直径の均一化や制 御が重要である。既存の発生装置では外部液循環 ラインなど複雑な構造や、気泡径が自由に制御で きないなどの欠点がある[1-3]。そこで、外部への 液の取り出しが不要かつ生成気泡径の制御が可 能な気泡の微細化技術の開発が期待されている。 気泡径を制御可能な気泡発生法として、単一孔 において成長過程の気泡に対して、気泡成長方向 に垂直な水流(十字流)を加えて気泡のせん断を 行い、単一孔からの早期離脱を促す方法が挙げら れる[4]Tan et al. (2000) は十字流条件下におけ る非球形気泡成長モデルを提案し、実験結果と計 算結果の良好な一致を得た [5] Tokanai et al. (2000) は、十字流条件において気泡の微細化の様 子を観察し、十字流中条件で生成する気泡の容積 を、静止液中で単一孔から離脱するの際のフォー スバランスに粘性力および気泡形状を考慮に入 れたモデルで表現した[6]Terasaka et al. (2003) 二重円管を用いて発生させた螺旋液流を用いて、 高粘性液体中でノズルから生成する気泡の微細 化およびサイズ制御に成功し、ガス流量およびせ ん断速度から気泡容積が決定する相関式を導出 した[7]さらに、液の運動ではなく、ノズル自身の振動 により気泡離脱を促進する方法が検討されてい Japanese J. Multiphase Flow Vol. 31 No. 4(2017) 422

混相流 Vol.31 No

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 混相流 Vol.31 No

[3] Enoki, K., Miyata, K., Mori, H., Kariya, K. and Hamamoto. Y., Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Upward in Small Rectangular and Triangular Tubes, Heat Transfer Engineering, Vol. 34(11-12), 966-975 (2013).

[4] Enoki, K., Mori, H., Miyata, K., Kariya, K. and Hamamoto, Y., Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing in Small Horizontal Tubes, Proc. of the 3rd Int. Forum on Heat Transfer, IFHT2012-193 (2012).

[5] Enoki, K., Mori, H., Miyata, K. and Hamamoto, Y., Flow Patterns of the Vapor-Liquid Two-Phase Flow in Small Tubes, Trans. of the JSRAE, Vol. 30(2), 155-167 (2013).

[6] Ishii, M. and Hibiki, T, Thermo-Fluid Dynamics of Two-Phase Flow: Second Edition, Springer, 8, (2010).

[7] Miyata, K., Mori. H. and Hamamoto. Y., Correlation for the Prediction of Flow Boiling Heat Transfer in Small Diameter Tubes, Trans. of the JSRAE, Vol. 28(2), 137-147 (2011).

[8] Enoki, K., Miyata, K. and Mori, H., Modification of the Prediction Correlation for Flow Boiling Heat Transfer in Small Diameter Tubes, Trans. of the JSRAE, Vol. 32(3), 275-283 (2015).

[9] Wambsganss, M.W., France, D.M., Jendrzejczyk, J.A. and Tran, T.N., Boiling Heat Transfer in a Horizontal Small-Diameter Tube, Trans. ASME J. Heat Transfer, Vol. 115, 963-972 (1993).

[10] Tran, T.N., Wambsganss, M.W. and France, D.M., Small Circular- and Rectangular-Channel Boiling with Two Refrigerants, Int. J. Multiphase Flow, Vol. 22(3), 485-498 (1996).

[11] Kew, P.A. and Cornwell, K., Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels, Applied Thermal Engineering, Vol. 17, 705-715 (1996).

[12] Bao, Z.Y., Fletcher, D.F. and Haynes, B.S., Flow Boiling Heat Transfer of Freon R11 and HCFC123 in Narrow Passages, Int. J. Heat and Mass Transfer, Vol. 43, 3347-3358 (2000).

[13] Kuwahara, K., Koyama, S. and Hashimoto, Y., Characteristics of Evaporation Heat Transfer and Flow Pattern of Pure Refrigerant HFC134a in Horizontal Capillary Tube, JSME Int. J., Vol. 43(4), 640-646 (2000).

[14] Saitoh, S., Daiguji, H. and Hihara, E., Effect of Tube Diameter on Boiling Heat Transfer of R-134a in Horizontal Small-Diameter Tubes, Int. J. Heat and Mass Transfer, Vol. 48, 4973-4984 (2005).

[15] Yamashita, H., Ueda, Y., Ishihara, I. and Matsumoto, R., Forced Convection Boiling Heat

Transfer of Carbon Dioxide in Microchannel, Proc. of the 80th JSME General Meeting of Kansai Branch, No.1204, pp.12.7-12.8, (2005).

[16] Li, M., Dang, C. and Hihara, E., Flow boiling heat transfer of HFO1234yf and R32 refregerant mixtures in a smooth horizontal tube: Part1. Experimental investigation, Int. J. Heat and Mass Transfer, Vol. 55, 3437-3446 (2012).

[17] Yokoyama, S., Saito, K. and Kato M., The Characteristics of Evaporation Heat Transfer in Flowing a Circular Mini-Channel (in Japanese), Proc. 47th Air Conditioning and Refrigeration Union Lecture, 21 (2013).

[18] Wu, X., Zhu, Yu. and Huang. X., Influence of 0o Helix Angle Micro Fins on Flow and Heat Transfer of R32 Evaporating in a Horizontal Mini Multichannel Flat Tube, Experimental Thermal and Fluid Science, Vol. 68, 669-680 (2015).

[19] Longo, G. A., Mancin, S., Righetti, G. and Zilio. C., Saturated Flow Boiling of HFC134a and its Low GWP Substitute HFO1234ze(E) Inside a 4 mm Horizontal Smooth Tube, Int. J. of Refrigeration, Vol. 64, 32-39 (2016).

[20] Lemon, E.W., Huber, M.L. and McLinden, M.O., NIST Standard Reference Database 23, Ver.9.1.1, (2016).

[21] Xavier, G. and Yoshua, B., Understanding the Difficulty of Training Deep Feed Forward Neural Networks, Proc. of the Int. Conf. on Artificial Intelligence and Statics, Society for Artificial Intelligence and Statistics, 249-256 (2010).

[22] Nesterov, Y., A Method for Unconstrained Covex Minimization Problem with the Rate of Convergenceo(1/k2), Doklady ANSSSR, Vol. 269, 543-547 (1983).

[23] Saitoh, S., Daiguji, E. and Hihara, E., Correlation for Boiling Heat Transfer of R-134a in Horizontal Tubes including Effect of Tube Diameter, Int. J. Heat and Mass Transfer, Vol. 50, 5215-5225 (2007).

[24] Zhang, W., Hibiki, T. and Mishima, K., Correlation for Flow Boiling Heat Transfer in Mini-Channels, Int. J. Heat and Mass Transfer, Vol. 47, 5749-5763 (2004).

[25] Stephan, K. and Abdelsalam, M., Heat-Transfer Correlation for Natural Convection Boiling, Int. J. Heat and Mass Transfer, Vol. 23, 963-972 (1980).

[26] Chen, J. C., Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow, Ind. Eng. Chem. Process Des. Dev., Vol. 5(3), 3437-3446 (1966).

[27] Pang, W.K. and Percy, L., Understanding Black-box Predictions via Influence Functions, Proc. of the 34th Int. Conf. on Machine Learning, PMLR70:1885-1894 (2017).

* 2016.11.14 受付

** 慶應義塾大学大学院理工学研究科開放環境科学専攻 〒223-8522 神奈川県横浜市港北区日吉 3-14-1

TEL: (045)566-1575 FAX: (045)566-1575 E-mail: [email protected]

*** 慶應義塾大学理工学部応用化学科

特集号論文推薦原稿

水平摺動するノズルからの微細気泡生成*

Smaller Bubble Formation from a Horizontally Oscillating Nozzle

村 上 大地郎 ** 寺 坂 宏 一

*** 藤 岡 沙都子 ***

MURAKAMI Daijiro TERASAKA Koichi FUJIOKA Satoko

Abstract Fine bubbles are used for cleaning system, separating process, food industry and so on. However, commercially available devices for fine bubble generation cannot be applied for particle dispersion liquid because they need liquid pumps and particles are accumulated on their systems. Moreover, the bubble diameter cannot be controlled in those devices. The uniformed and controlled bubble diameter is important for a reasonable industrial device design. Therefore, in this study, a novel method for fine bubble generation without liquid circulation was developed. A horizontally oscillating micro-nozzle was used to make bubbles small. The effect of the gas flow rate, the oscillating frequency, and the oscillation amplitude on the average bubble diameter was investigated experimentally. Moreover, visualization and quantification of liquid motion around the oscillating nozzle was carried out in this study. It was clarified that the liquid viscous force due to the relative velocity of the nozzle motion to the liquid motion enhances the bubble detachment from the nozzle in this method. Keywords: Fine bubble, Oscillating Micro-nozzle, Bubble formation, Bubble dispersion

1. 緒 言

気液接触装置はガス吸収器、気泡塔、バイオリ

アクターなど多くの工業装置に利用されており、

気液接触面積はプロセス性能に大きく影響する。

気液間の物質移動の向上には気泡の微細化や合

体防止、工業装置設計には気泡直径の均一化や制

御が重要である。既存の発生装置では外部液循環

ラインなど複雑な構造や、気泡径が自由に制御で

きないなどの欠点がある[1-3]。そこで、外部への

液の取り出しが不要かつ生成気泡径の制御が可

能な気泡の微細化技術の開発が期待されている。

気泡径を制御可能な気泡発生法として、単一孔

において成長過程の気泡に対して、気泡成長方向

に垂直な水流(十字流)を加えて気泡のせん断を

行い、単一孔からの早期離脱を促す方法が挙げら

れる[4]。Tan et al. (2000) は十字流条件下におけ

る非球形気泡成長モデルを提案し、実験結果と計

算結果の良好な一致を得た [5]。Tokanai et al.

(2000) は、十字流条件において気泡の微細化の様

子を観察し、十字流中条件で生成する気泡の容積

を、静止液中で単一孔から離脱するの際のフォー

スバランスに粘性力および気泡形状を考慮に入

れたモデルで表現した[6]。Terasaka et al. (2003) は

二重円管を用いて発生させた螺旋液流を用いて、

高粘性液体中でノズルから生成する気泡の微細

化およびサイズ制御に成功し、ガス流量およびせ

ん断速度から気泡容積が決定する相関式を導出

した[7]。

さらに、液の運動ではなく、ノズル自身の振動

により気泡離脱を促進する方法が検討されてい

Japanese J. Multiphase Flow Vol. 31 No. 4(2017)422

Page 2: 混相流 Vol.31 No

る。ノズル振動条件下での気泡生成についてはこ

れまでにも、MacIntyre (1967) による水平振動下

での気泡の微細化や、Vejrazka et al. (2008) による

鉛直方向の振動による気泡径制御が報告されて

いる。前者は 小気泡径 268 µm、後者は 小気泡

径 220 µm を達成したが、水平方向の周波数や振

幅といった振動条件が生成気泡径に及ぼす影響

に関してはまだ明らかにされていない[8,9]。

また、従来の工業的微細気泡発生法においては、

強制液循環のための外部ラインや液駆動ポンプ

が必要となるため、廃水処理分野や洗浄分野への

応用など、循環液流に固体や異物等の分散物が存

在する場合、発生装置内での閉塞や装置自体の能

力低下が問題となる。Tamura & Uehara (2013) は

従来のマイクロバブル発生器を用いて汚染水中

にマイクロバブルを懸濁させた際に、マイクロバ

ブル発生装置内に汚染物質が詰まり、装置の使用

ができなくなった事例を指摘した[10]。

そこで本研究では強制液循環を用いずに、かつ

気泡径制御可能な微細気泡発生法として、微細孔

を有した円筒型ノズルを水平方向に高速度振動

(以下、摺動)させる方法を提案し、生成気泡径に

及ぼすガス流量、摺動周波数および摺動振幅の影

響を調べた。また、粒子追跡法を用いて摺動ノズ

ル周りに発生する液流動の観察および定量化を

行い、本発生法における気泡微細化のメカニズム

を検討した。

2. 実験装置及び方法

2.1 気泡径測定

Fig. 1 に実験装置概略図を示した。長さ 20 mm

×外径 1.5 mm×内径 20 µm のセラミック製微細

単孔ノズルを摺動装置に取り付け、摺動装置を高

さ 20 cm×横幅 30 cm×奥行き 10 cm のアクリ

ル樹脂製の水槽中に設置した。液相には温度 23±

1℃の水道水を使用し、リニアコンプレッサ

(AC0207、日東工器)で圧縮した空気を微細孔ノ

ズルに流量 QG [mL/min]で圧入し、気泡を連続的

に発生させた。摺動装置はモータと駆動部と接続

されており、モータの回転数により摺動周波数を

f = 0~60 Hz の範囲で制御した。摺動幅は W = 3.0

mm および 6.0 mm の 2 種類で実験を行った。高

速度カメラ(FASTCAM-SA5、フォトロン)に 50

倍ズームレンズ(VH-Z00R、キーエンス)を接続

し、微細孔ノズルから気泡が生成する様子を 125

~ 6000 fps で撮影した。撮影された画像から、画

像解析ソフト(ImageJ1.6.0、NIH)を用いて楕円

近似により気泡の面積を測定した。近似された楕

円の面積と等しくなる円相当径を気泡径 d とし

た。各条件について 50~60 個の気泡について解析

を行い、平均生成気泡径 dave [µm]を算出した。本

実験で撮影された画像の解像度は 21.1 µm であり、

画像解析により測定された気泡径は 大 25%の

誤差を含む。

気泡がノズル先端から離脱した瞬間のノズル

の摺動中心からの変位を画像より求め、変位を摺

動振幅で除して無次元摺動変位 とした。本研究

では気泡がノズル中心から離脱し、気泡周囲の界

面が全て液相で囲まれた瞬間を気泡離脱とみな

した。

さらに、i 番目の気泡がノズル先端から離脱し

てから、i+1 番目の気泡がノズル先端から離脱す

るまでの気泡発生間隔Δti [s]を測定し、50~60 個

の測定データから平均気泡発生間隔∆ [s]を求め

た。摺動周期 T [s]を∆ [s]で除し、式 (1)より摺動

1 往復あたりの気泡生成数 n[個]を求めた。

∆ (1)

Fig. 1 Experimental apparatus.

①②

⑥⑦

④⑨

⑤ ⑪

①Light④Three-way stopcock⑦Compressor⑩Urethane tube

②Acrylic container⑤Oscillating machine⑧High speed camera⑪Motor

③Micro-nozzle⑥Regulator⑨Tap water⑫Motor controller

る。ノズル振動条件下での気泡生成についてはこ

れまでにも、MacIntyre (1967) による水平振動下

での気泡の微細化や、Vejrazka et al. (2008) による

鉛直方向の振動による気泡径制御が報告されて

いる。前者は 小気泡径 268 µm、後者は 小気泡

径 220 µm を達成したが、水平方向の周波数や振

幅といった振動条件が生成気泡径に及ぼす影響

に関してはまだ明らかにされていない[8,9]。

また、従来の工業的微細気泡発生法においては、

強制液循環のための外部ラインや液駆動ポンプ

が必要となるため、廃水処理分野や洗浄分野への

応用など、循環液流に固体や異物等の分散物が存

在する場合、発生装置内での閉塞や装置自体の能

力低下が問題となる。Tamura & Uehara (2013) は

従来のマイクロバブル発生器を用いて汚染水中

にマイクロバブルを懸濁させた際に、マイクロバ

ブル発生装置内に汚染物質が詰まり、装置の使用

ができなくなった事例を指摘した[10]。

そこで本研究では強制液循環を用いずに、かつ

気泡径制御可能な微細気泡発生法として、微細孔

を有した円筒型ノズルを水平方向に高速度振動

(以下、摺動)させる方法を提案し、生成気泡径に

及ぼすガス流量、摺動周波数および摺動振幅の影

響を調べた。また、粒子追跡法を用いて摺動ノズ

ル周りに発生する液流動の観察および定量化を

行い、本発生法における気泡微細化のメカニズム

を検討した。

2. 実験装置及び方法

2.1 気泡径測定

Fig. 1 に実験装置概略図を示した。長さ 20 mm

×外径 1.5 mm×内径 20 µm のセラミック製微細

単孔ノズルを摺動装置に取り付け、摺動装置を高

さ 20 cm×横幅 30 cm×奥行き 10 cm のアクリ

ル樹脂製の水槽中に設置した。液相には温度 23±

1℃の水道水を使用し、リニアコンプレッサ

(AC0207、日東工器)で圧縮した空気を微細孔ノ

ズルに流量 QG [mL/min]で圧入し、気泡を連続的

に発生させた。摺動装置はモータと駆動部と接続

されており、モータの回転数により摺動周波数を

f = 0~60 Hz の範囲で制御した。摺動幅は W = 3.0

mm および 6.0 mm の 2 種類で実験を行った。高

速度カメラ(FASTCAM-SA5、フォトロン)に 50

倍ズームレンズ(VH-Z00R、キーエンス)を接続

し、微細孔ノズルから気泡が生成する様子を 125

~ 6000 fps で撮影した。撮影された画像から、画

像解析ソフト(ImageJ1.6.0、NIH)を用いて楕円

近似により気泡の面積を測定した。近似された楕

円の面積と等しくなる円相当径を気泡径 d とし

た。各条件について 50~60 個の気泡について解析

を行い、平均生成気泡径 dave [µm]を算出した。本

実験で撮影された画像の解像度は 21.1 µm であり、

画像解析により測定された気泡径は 大 25%の

誤差を含む。

気泡がノズル先端から離脱した瞬間のノズル

の摺動中心からの変位を画像より求め、変位を摺

動振幅で除して無次元摺動変位 とした。本研究

では気泡がノズル中心から離脱し、気泡周囲の界

面が全て液相で囲まれた瞬間を気泡離脱とみな

した。

さらに、i 番目の気泡がノズル先端から離脱し

てから、i+1 番目の気泡がノズル先端から離脱す

るまでの気泡発生間隔Δti [s]を測定し、50~60 個

の測定データから平均気泡発生間隔∆ [s]を求め

た。摺動周期 T [s]を∆ [s]で除し、式 (1)より摺動

1 往復あたりの気泡生成数 n[個]を求めた。

∆ (1)

Fig. 1 Experimental apparatus.

①②

⑥⑦

④⑨

⑤ ⑪

①Light④Three-way stopcock⑦Compressor⑩Urethane tube

②Acrylic container⑤Oscillating machine⑧High speed camera⑪Motor

③Micro-nozzle⑥Regulator⑨Tap water⑫Motor controller

混相流 31 巻 4号(2017) 423

Page 3: 混相流 Vol.31 No

る。ノズル振動条件下での気泡生成についてはこ

れまでにも、MacIntyre (1967) による水平振動下

での気泡の微細化や、Vejrazka et al. (2008) による

鉛直方向の振動による気泡径制御が報告されて

いる。前者は 小気泡径 268 µm、後者は 小気泡

径 220 µm を達成したが、水平方向の周波数や振

幅といった振動条件が生成気泡径に及ぼす影響

に関してはまだ明らかにされていない[8,9]。

また、従来の工業的微細気泡発生法においては、

強制液循環のための外部ラインや液駆動ポンプ

が必要となるため、廃水処理分野や洗浄分野への

応用など、循環液流に固体や異物等の分散物が存

在する場合、発生装置内での閉塞や装置自体の能

力低下が問題となる。Tamura & Uehara (2013) は

従来のマイクロバブル発生器を用いて汚染水中

にマイクロバブルを懸濁させた際に、マイクロバ

ブル発生装置内に汚染物質が詰まり、装置の使用

ができなくなった事例を指摘した[10]。

そこで本研究では強制液循環を用いずに、かつ

気泡径制御可能な微細気泡発生法として、微細孔

を有した円筒型ノズルを水平方向に高速度振動

(以下、摺動)させる方法を提案し、生成気泡径に

及ぼすガス流量、摺動周波数および摺動振幅の影

響を調べた。また、粒子追跡法を用いて摺動ノズ

ル周りに発生する液流動の観察および定量化を

行い、本発生法における気泡微細化のメカニズム

を検討した。

2. 実験装置及び方法

2.1 気泡径測定

Fig. 1 に実験装置概略図を示した。長さ 20 mm

×外径 1.5 mm×内径 20 µm のセラミック製微細

単孔ノズルを摺動装置に取り付け、摺動装置を高

さ 20 cm×横幅 30 cm×奥行き 10 cm のアクリ

ル樹脂製の水槽中に設置した。液相には温度 23±

1℃の水道水を使用し、リニアコンプレッサ

(AC0207、日東工器)で圧縮した空気を微細孔ノ

ズルに流量 QG [mL/min]で圧入し、気泡を連続的

に発生させた。摺動装置はモータと駆動部と接続

されており、モータの回転数により摺動周波数を

f = 0~60 Hz の範囲で制御した。摺動幅は W = 3.0

mm および 6.0 mm の 2 種類で実験を行った。高

速度カメラ(FASTCAM-SA5、フォトロン)に 50

倍ズームレンズ(VH-Z00R、キーエンス)を接続

し、微細孔ノズルから気泡が生成する様子を 125

~ 6000 fps で撮影した。撮影された画像から、画

像解析ソフト(ImageJ1.6.0、NIH)を用いて楕円

近似により気泡の面積を測定した。近似された楕

円の面積と等しくなる円相当径を気泡径 d とし

た。各条件について 50~60 個の気泡について解析

を行い、平均生成気泡径 dave [µm]を算出した。本

実験で撮影された画像の解像度は 21.1 µm であり、

画像解析により測定された気泡径は 大 25%の

誤差を含む。

気泡がノズル先端から離脱した瞬間のノズル

の摺動中心からの変位を画像より求め、変位を摺

動振幅で除して無次元摺動変位 とした。本研究

では気泡がノズル中心から離脱し、気泡周囲の界

面が全て液相で囲まれた瞬間を気泡離脱とみな

した。

さらに、i 番目の気泡がノズル先端から離脱し

てから、i+1 番目の気泡がノズル先端から離脱す

るまでの気泡発生間隔Δti [s]を測定し、50~60 個

の測定データから平均気泡発生間隔∆ [s]を求め

た。摺動周期 T [s]を∆ [s]で除し、式 (1)より摺動

1 往復あたりの気泡生成数 n[個]を求めた。

∆ (1)

Fig. 1 Experimental apparatus.

①②

⑥⑦

④⑨

⑤ ⑪

①Light④Three-way stopcock⑦Compressor⑩Urethane tube

②Acrylic container⑤Oscillating machine⑧High speed camera⑪Motor

③Micro-nozzle⑥Regulator⑨Tap water⑫Motor controller

る。ノズル振動条件下での気泡生成についてはこ

れまでにも、MacIntyre (1967) による水平振動下

での気泡の微細化や、Vejrazka et al. (2008) による

鉛直方向の振動による気泡径制御が報告されて

いる。前者は 小気泡径 268 µm、後者は 小気泡

径 220 µm を達成したが、水平方向の周波数や振

幅といった振動条件が生成気泡径に及ぼす影響

に関してはまだ明らかにされていない[8,9]。

また、従来の工業的微細気泡発生法においては、

強制液循環のための外部ラインや液駆動ポンプ

が必要となるため、廃水処理分野や洗浄分野への

応用など、循環液流に固体や異物等の分散物が存

在する場合、発生装置内での閉塞や装置自体の能

力低下が問題となる。Tamura & Uehara (2013) は

従来のマイクロバブル発生器を用いて汚染水中

にマイクロバブルを懸濁させた際に、マイクロバ

ブル発生装置内に汚染物質が詰まり、装置の使用

ができなくなった事例を指摘した[10]。

そこで本研究では強制液循環を用いずに、かつ

気泡径制御可能な微細気泡発生法として、微細孔

を有した円筒型ノズルを水平方向に高速度振動

(以下、摺動)させる方法を提案し、生成気泡径に

及ぼすガス流量、摺動周波数および摺動振幅の影

響を調べた。また、粒子追跡法を用いて摺動ノズ

ル周りに発生する液流動の観察および定量化を

行い、本発生法における気泡微細化のメカニズム

を検討した。

2. 実験装置及び方法

2.1 気泡径測定

Fig. 1 に実験装置概略図を示した。長さ 20 mm

×外径 1.5 mm×内径 20 µm のセラミック製微細

単孔ノズルを摺動装置に取り付け、摺動装置を高

さ 20 cm×横幅 30 cm×奥行き 10 cm のアクリ

ル樹脂製の水槽中に設置した。液相には温度 23±

1℃の水道水を使用し、リニアコンプレッサ

(AC0207、日東工器)で圧縮した空気を微細孔ノ

ズルに流量 QG [mL/min]で圧入し、気泡を連続的

に発生させた。摺動装置はモータと駆動部と接続

されており、モータの回転数により摺動周波数を

f = 0~60 Hz の範囲で制御した。摺動幅は W = 3.0

mm および 6.0 mm の 2 種類で実験を行った。高

速度カメラ(FASTCAM-SA5、フォトロン)に 50

倍ズームレンズ(VH-Z00R、キーエンス)を接続

し、微細孔ノズルから気泡が生成する様子を 125

~ 6000 fps で撮影した。撮影された画像から、画

像解析ソフト(ImageJ1.6.0、NIH)を用いて楕円

近似により気泡の面積を測定した。近似された楕

円の面積と等しくなる円相当径を気泡径 d とし

た。各条件について 50~60 個の気泡について解析

を行い、平均生成気泡径 dave [µm]を算出した。本

実験で撮影された画像の解像度は 21.1 µm であり、

画像解析により測定された気泡径は 大 25%の

誤差を含む。

気泡がノズル先端から離脱した瞬間のノズル

の摺動中心からの変位を画像より求め、変位を摺

動振幅で除して無次元摺動変位 とした。本研究

では気泡がノズル中心から離脱し、気泡周囲の界

面が全て液相で囲まれた瞬間を気泡離脱とみな

した。

さらに、i 番目の気泡がノズル先端から離脱し

てから、i+1 番目の気泡がノズル先端から離脱す

るまでの気泡発生間隔Δti [s]を測定し、50~60 個

の測定データから平均気泡発生間隔∆ [s]を求め

た。摺動周期 T [s]を∆ [s]で除し、式 (1)より摺動

1 往復あたりの気泡生成数 n[個]を求めた。

∆ (1)

Fig. 1 Experimental apparatus.

①②

⑥⑦

④⑨

⑤ ⑪

①Light④Three-way stopcock⑦Compressor⑩Urethane tube

②Acrylic container⑤Oscillating machine⑧High speed camera⑪Motor

③Micro-nozzle⑥Regulator⑨Tap water⑫Motor controller

Japanese J. Multiphase Flow Vol. 31 No. 4(2017)424

Page 4: 混相流 Vol.31 No

混相流 31 巻 4号(2017) 425

Page 5: 混相流 Vol.31 No

Japanese J. Multiphase Flow Vol. 31 No. 4(2017)426