20
Finite element analysis of a Mannesmann roll piercing process JSTP International session www.afdex.com AFDEX S. H. Sim1, J. M. Cho1, M. C. Lee2, M. S. Joun3 (speaker) S.H Sim J.M. Cho, M.C. Lee, M.S. Joun, Gyeongsang National Univ., Korea

- Metal Forming CAE Lab.msjoun.gnu.ac.kr/pub/2011-Papers/conference/JSTP_RP.pdf · tube forming process in Diescher’s mill”, ... Cutting Heating Piercing Elongating Cooling Sizing

Embed Size (px)

Citation preview

Finite element analysis

of a Mannesmann roll piercing process

JSTP International session

www.afdex.com

AFDEX

S. H. Sim1, J. M. Cho1, M. C. Lee2, M. S. Joun3 (speaker)

S.H Sim J.M. Cho, M.C. Lee, M.S. Joun, Gyeongsang National Univ., Korea

Contents

▣ Introduction

▣ Conclusions

⊙ Research aim

⊙ Literature survey

▣ Finite element analysis

⊙ Research objects

⊙ Process conditions

⊙ Predictions

⊙ Welded pipes and seamless pipes

○ Different manufacturing processes

-Welded pipes: Bending, welding

-Seamless pipes: Roll piercing, extrusion

○ Characteristics

-Welded pipes: Cheap, low reliability

-Seamless pipes: Expensive, high reliability, oil or plant industries

Research objective

⊙ Rigid-thermoviscoplastic FEM based on tetrahedral

finite elements

○ Intelligent remeshing

○ Verification of the approach

1) Kazutake Komori, Kouta Mizuno, “Study on plastic deformation in cone-type rotary piercing

process using model piercing mill for modeling clay”, Journal of Materials Processing

Technology, 4994–5001, 2009

2) Ken-ichiro Mori, Hidenori Yoshimura, Kozo Osakada, Kazutake Komoria, Kouta Mizunob,

“Simplified three-dimensional simulation of rotary piercing of seamless pip by rigid- plastic

finite-element method”, Journal of Materials Processing Technology 80-81, 700-706, 1996

3) Kazutake Komori, “Simulation of Mannesmann piercing process by the three-dimensional

rigid-plastic finite-element method”, International Journal of Mechanical Sciences 47, 1838–

1853, 2005

4) B. Li, S.H. Zhang, G.L. Zhang, H.Q. Zhang, “Prediction of 3-D temperature field

of TP2 copper tubes in three-roll planetary rolling process”, journal of materials

processing technology 2 0 5 ( 2 0 0 8 ) 370–375

5) Z. Pater, J. Kazanecki, J. Bartnicki , “Three dimensional thermo-mechanical simulation of the

tube forming process in Diescher’s mill”, Journal of Materials Processing Technology, Vol.

177, pp.67–170, 2006

6) W. A. Khudheyer, D. C. Barton, T. Z. Blazynski, “A comparison between macroshear

redundancy and loading effects in 2- and 3-roll rotary tube cone piercers, Journal of

Materials Processing Technology, Vol. 65, pp. 191-202, 1997

Literature survey

7) Kazutake Komor, Minoru Suzuki, Simulation of deformation and temperature in

press roll piercing, Journal of Materials Processing Technology, Vol. 169, pp. 249–257, 2005

8) Sudhir Chiluveru, “Computational Modeling of Crack Initiation in Crossroll Piercing”

9) Dr.-Ing. Karl-Heinz Brensing, Düsseldorf Dipl.-Ing. Baldur Sommer, Salzgitter Großrohre

GmbH, “Steel Tube and Pipe Manufacturing Processes”

Square billet

(<Φ450)

Round billet

( <Φ450 )

Tube Radial Forging

(Mandrel)

Hollow Ingot

( <Φ450 )

Open die Forging Radial Forging

Preforming Press

Cutting Heating Piercing Elongating Cooling Sizing Straightening

Mannesmann Process

Pipe manufacturing processes

Concept of roll piercing process

⊙ Conceptual diagram of Mannesmann roll piercing ⊙ Roll piercing equpiment

Research objects

⊙ Diescher’s roll piercing process

Process design

Work roll

Mandrel Disk Pusher

Process and material conditions

⊙ Rolls and tools

Item velocity Law of friction Friction factor Initial temp.

Work roll 60 rpm Sticking - 100℃

Disk 6.8 rpm Constant shear friction 0.4 100℃

Mandrel - - 0.0 300℃

Pusher 20m/s - 0.0 0℃

Initial temp. Ambient temp. Heat transfer coef.

with dies

Heat transfer coef.

with environments

Thermal

conductivity

1180℃ 80℃ 10000 200 0.033

⊙ Material conditions

2W/m K 2W/m K 2W/m K

Flow stress of material

Strain rate(/s)

Tru

es

tre

ss

(MP

a)

0 10 20 30 40 500

50

100

150

200

250

300

900

1000

1100

1200

0.01

0.10

0.70

0.30

0.50

⊙: SUJ(100Cr6)

True stress-strain rate curves

0.01 900 129.6900 0.1230

0.10 900 144.1000 0.1230

0.30 900 175.8200 0.1070

0.50 900 178.5700 0.1070

0.70 900 160.6500 0.1310

0.01 1000 88.7360 0.1460

0.10 1000 98.5950 0.1460

0.30 1000 122.0400 0.1270

0.50 1000 122.0400 0.1290

0.70 1000 115.8300 0.1340

0.01 1100 58.9500 0.1690

0.10 1100 65.5000 0.1690

0.30 1100 82.7370 0.1430

0.50 1100 84.8060 0.1430

0.70 1100 82.7370 0.1480

0.01 1200 41.5750 0.2030

0.10 1200 46.1950 0.2030

0.30 1200 57.2260 0.1710

0.50 1200 57.2260 0.1780

0.70 1200 53.0900 0.1920

C n

Predictions

⊙ After 1.0 second

200 mm

Predictions

⊙ After 2.0 seconds

210 mm

Predictions

⊙ After 3.0 seconds

228 mm

Predictions

⊙ After 4.0 seconds

262 mm

Comparison with Pater et al.

1 3 5

2 4 6

1 3 5

2 4 6

Comparison with Pater et al.

1 2 3 4 5 6

Ellipticity 1.038 1.0295 1.045 1.054 1.004 1.0279

1 3 5

2 4 6

1 3 5

2 4 6

1 2 3 4 5 6

Ellipticity 1.032 1.031 1.044 1.056 1.000 1.007

Difference(%) 0.57 0.15 0.10 0.19 0.40 2.03

Comparison of temperature

Change of volume during simulation

Stroke(s)

Vo

lum

eC

ha

ng

e(%

)

0 1.25 2.5 3.75 5-0.1

-0.05

0

0.05

0.1

⊙ Volume vs. Stroke

Predictions – animation

⊙ Mannesmann roll piercing with Diescher’s type guiding disk was

simulated by AFDEX 3D

-Rigid-Thermoviscoplastic FEM

-Intelligent remeshing with tetrahedral elements

⊙ Comparison with Pater et al.

-Good agreement in term of deformed shape

-Much more reliable predictions

Conclusions