41
1 City Logistics Working on livable cities through sustainable city logistics Walther Ploos van Amstel Professor of City Logistics at the Amsterdam University of Applied Sciences (HvA) Faculty of Technology Urban Technology research program September 2015

Citylogistics: working on livable cities

Embed Size (px)

Citation preview

Page 1: Citylogistics: working on livable cities

  1  

     

City  Logistics    Working  on  livable  cities  through  sustainable  city  logistics    

     Walther  Ploos  van  Amstel    Professor  of  City  Logistics  at  the  Amsterdam  University  of  Applied  Sciences  (HvA)  Faculty  of  Technology  Urban  Technology  research  program  September  2015  

Page 2: Citylogistics: working on livable cities

  2  

   Content        1.   Urban  mobility  2.     Measures  for  city  logistics    3.     International  research  4.   Supply  chain  perspective  5.   City  logistics  as  we  head  towards  2050  6.   An  integrated  approach  7.   Applied  research  8.   The  future  of  sustainable  city  logistics                  Copyright  Walther  Ploos  van  Amstel  Amsterdam,  2015  

         

This  relatively  new  discipline  has  several  different  names  in  English,  including  urban  freight  transport  (UTF),  urban  distribution,  city  distribution,  urban  logistics,  and  city  logistics.    I  prefer  the  term  "city  logistics”  and  use  that  in  this  lecture  and  otherwise  in  my  work.  

Page 3: Citylogistics: working on livable cities

  3  

 Clean  and  sustainable  cities  are  appealing  places  to  live,  to  work,  to  enjoy  life,  and  –  not  least  –  to  invest  in.    I  live  right  in  the  very  center  of  Amsterdam  and  look  out  over  the  bustling  square  in  front  of  Central  Station.  Every  day,  around  the  clock,  trucks  and  delivery  vans  drive  past  my  door  to  deliver  shoes  and  put  fresh  fish  on  the  table;  they  deliver  packages  from  web  stores,  they  arrive  with  construction  materials,  and  they  pick  up  lots  and  lots  of  garbage.  It’s  a  wonderful  sight  if  you  enjoy  transport  as  much  as  I  do.    My  neighbors  aren’t  quite  as  excited  about  transport,  however.  They  complain  about  the  poor  air  quality,  the  lack  of  safety,  and  the  inaccessibility  of  the  neighborhood.  Irritation  is  also  growing  among  the  local  business  owners  themselves.  Their  customers  are  complaining...  It’s  really  not  much  fun  trying  to  enjoy  a  cold  beer  at  an  outdoor  café  with  all  those  trucks  and  touring  cars  chugging  by.    Good  city  logistics  is  important  for  the  economic  vitality  and  the  appeal  of  cities.  It  ensures  that  restaurants  can  serve  their  guests,  that  stores  can  offer  the  very  latest  product  range  and  that  buildings  can  be  renovated  without  delays.    Urbanization  puts  new  demands  on  urban  mobility.  As  customer  demands  evolve,  city  logistics  is  becoming  more  and  more  finely  meshed  and  more  often  just-­in-­time.  If  no  adjustments  are  made  to  current  policy,  city  logistics  will  continue  to  grow.  City  logistics  needs  to  become  smarter,  cleaner,  quieter,  and  safer,  with  faster  flows.      The  City  Logistics  research  program  will  be  conducting  applied  research  on  ways  to  improve  city  logistics.  In  my  inaugural  lecture  I  will  start  by  giving  an  impression  of  the  challenges  in  relation  to  city  logistics  in  Amsterdam  and  other  cities.  I  will  then  give  an  overview  of  the  themes  for  future  research.  In  developing  a  base  of  practical  knowledge,  we  will  be  making  use  of  an  integrated  approach  on  the  basis  of  a  city  logistics  concept  and  the  Business  Model  Canvas.  Finally,  I  will  conclude  by  presenting  the  themes  of  this  new  research  program.    Walther  Ploos  Amstel  Amsterdam,  September  2015  

Page 4: Citylogistics: working on livable cities

  4  

 

1.   Urban  mobility      All  around  the  globe,  urban  populations  are  growing.  In  the  Netherlands,  too,  the  process   of   urbanization   is   taking   place   in  many   large,  medium-­‐size,   and   small  cities   and   in   their   immediate   vicinity.  The  most  highly  urbanized   region  of   the  Netherlands   is   commonly   referred   to   there   as   the   Randstad.   Encircling   the  country’s   rural   “Green  Heart”,   the  Randstad   includes   the   country’s   four   largest  cities:   Amsterdam,   Rotterdam,   Utrecht,   and   The   Hague   (PBL,   2015).   In   an  interview   in   the  Dutch  daily  newspaper  Trouw,  Amsterdam  urban  planner  and  social  geographer  Zef  Hemel  predicted   that  Amsterdam’s  population  will   reach  two  million  inhabitants  by  2040  (Hemel,  2015).  As  a  consequence  of  such  growth,  more  and  more  people  will  need  to  share  the  same  space  in  the  city  (Groen  Links  Amsterdam,  2011).    Policy-­‐makers   around   the   world   are   facing   the   challenge   of   keeping   their  growing  cities  livable.  Freight  traffic  plays  an  important  role  in  that  connection,  in   both   a   positive   and   a   negative   sense.   ALICE/ERTRAC   (2015)   estimates   that  between  10  and  15%  of  all  vehicle  mileage  driven  in  cities  involves  freight  traffic.  Research  in  the  US  has  shown  a  disproportionately  strong  increase  in  the  share  of  truck  mileage  driven  within  cities  in  the  past  50  years,  particularly  by  smaller  trucks:   from  40%   in  1966   to   60%   in  2013.   The   increase  has   been  particularly  steep   in   the   past   few   years   as   consumers   purchase   more   and   more   online  (Brookings,  2015)  

 Urbanization  is  placing  new  demands  on  urban  mobility:    between   10   and   15%   of   all   vehicle   mileage   driven   in   cities  involves  freight  traffic.    Mobility  in  Amsterdam  In   the   Uitvoeringsagenda  Mobiliteit   voor   Amsterdam   (“Implementation   Agenda  for   Mobility   in   Amsterdam”)   from   April   2015,   city   alderman   Pieter   Litjens  (Gemeente  Amsterdam,  2015b)  wrote  (in  Dutch):      

Throughout  the  centuries,  Amsterdam  has  held  a  special  attraction  for  many  people.  The   city’s   appeal   has   brought   us   many   new   Amsterdammers,   unprecedented  dynamism,   and   economic   and   cultural   prosperity.   Its   success   is   astonishing:   each  year   more   and   more   people   come   to   live,   work,   and   study   in   Amsterdam.   And  especially   since   the   recent   reopening   of   the   city’s   greatest   museums,   more   and  more  tourists  are  finding  their  way  to  our  nation’s  capital.      With  each  new  day,  Amsterdam  is  only  getting  busier  and  busier  –  but  that  also  has  a   downside.   Cars,   bicyclists,   and  pedestrians   increasingly   find   themselves   in   each  other’s   way,   and   the   scarce   public   spaces   in   or   near   the   city   center   are   nearly  always  full  of  people.  Both  the  accessibility  and  the  public  spaces  of  Amsterdam  are  under   increasing   pressure.   To   keep   the   city   safe   and   easy   to   reach,   and   to   keep  public  spaces  accessible  and  appealing,  we  are  going  to  need  to  make  some  choices.  It   is   no   longer   workable   to   have   cars   and   bikes   and   pedestrians   and   public  transport   going   everywhere   at   the   same   time.   We   need   to   accommodate   the  

Page 5: Citylogistics: working on livable cities

  5  

increasing  mobility   in   a   heavily   urbanized   area   such   as   Amsterdam   primarily   by  giving  more  room  to  pedestrians,  bicyclists,  and  public  transportation.  

 

   This  Uitvoeringsagenda  lists  a  number  of  measures  aimed  at  creating  more  room  for  loading  and  unloading  and  for  optimizing  regulations  and  enforcing  those.  It  mentions   a   Supply   Committee   (an   initiative   of   the   trade   organizations   MKB  Amsterdam,  VNO-­‐NCW,  EVO,  and  TLN)   that  will  make  proposals   for   improving  accessibility  and  ensuring  a  better  flow  in  the  transport  of  goods.  Topics  that  the  City  of  Amsterdam  would  like  to  gain  more  insight  into  include:  slow  traffic  flows  (pedestrians   and   bicyclists),   urban   distribution   and   logistics,   electric   mobility,  automated  transport,  and  mobility  behavior.  The  City  of  Amsterdam  is  studying  these   themes   in   collaboration   with   the   following   knowledge   institutions:   the  Amsterdam   Institute   for   Advanced   Metropolitan   Solutions,   the   University   of  Amsterdam   (UvA),   Vrije   Universiteit   Amsterdam   (VU),   and   the   Amsterdam  University  of  Applied  Sciences  (HvA).    In   its   Agenda   Duurzaamheid   (“Sustainability   Agenda”),   the   City   of   Amsterdam  states   its   intention   to   improve   the   city’s   air   quality   by   stimulating   the   use   of  zero-­‐emission   vehicles   and   introducing   low-­‐emission   zones   (Gemeente  Amsterdam,  2015a).  A  more  regional  focus  in  the  distribution  of  products  or  an  expansion  of   the   separate   collection  of  waste   streams  will  mean  more  mileage  for  trucks.  But  that  would  come  at  the  expense  of  greater  accessibility  and  better  air   quality,   and   it   will   call   for   new   forms   of   urban   distribution   and   the  consolidation  of  waste  collection  trips  in  the  city.  Agreements  will  be  made  with  trade  organizations  about  ways  to  achieve  zero-­‐emission  mobility.  The  subsidies  that  are  intended  to  stimulate  zero-­‐emission  mobility  will  be  continued  to  make  it  possible  to  meet  the  air-­‐quality  standards.    The   Stad   in   Balans   (“City   in   Balance”)   memorandum   (Gemeente   Amsterdam,  2015c)  has  also  made  the  case  for  paying  closer  attention  to  city  logistics.  It  calls  for  smart,  small-­‐scale,  and  zero-­‐emission  urban  distribution,  including  a  greater  use  of  waterways.      

Page 6: Citylogistics: working on livable cities

  6  

 Freight   traffic   is  only  one  of   the   transport   flows   in   the  city,  of  course.   It  shares  the   infrastructure  with   pedestrians,   bicyclists   and   other   two-­‐wheeled   vehicles,  private  cars,  taxis,  and  public  transportation,  and  it  shares  the  water  with  canal  excursion  boats  and  pleasure  craft.    Recent   traffic   surveys   held   on   Amsterdam’s   Ferdinand   Bolstraat   (Hogeschool  van   Amsterdam,   2015a)   show   that   some   80%   of   the   freight   traffic   consists   of  delivery   vans   (the   remaining  20%  concerns   larger   trucks   and   garbage   trucks).  The  main  categories  are  (in  order  of   importance)  construction  and   installation,  hospitality   and   food   service,   and  waste.   There   are   also  many   parcel   and   store  deliveries.  In  addition  there  are  the  combined  flows  of  people  and  material  such  as   service   technicians,   builders,   and   installers   (Hogeschool   van   Amsterdam,  2015a).  In  Amsterdam’s  bustling  Haarlemmerstraat  neighborhood,  freight  traffic  account  for  as  much  as  40%  of  rush-­‐hour  traffic,  both  in  the  mornings  and  in  the  evenings  (Hogeschool  van  Amsterdam,  2015f).    Most  of  the  deliveries  in  the  city  are  still  made  using  carriers  on  own  account  or  dedicated   outsourcing.   City   logistics,   whereby   a   logistics   service   provider  consolidates  freight  flows  from  multiple  shippers,  is  limited.  The  carriers  on  own  account   enters   the   city   from   relatively   short   distances:   about   25   miles   on  average.   In   contrast,   professional   freight   transport   takes   place   over   longer  distances:   an   average   of   56  miles   according   to   the   transport   statistics   of   CBS.  Studies   on   public   procurement   confirm   these   figures   (Hogeschool   van  Amsterdam,  2014,  2015c;  Balm  et  al.,  2015).    Amsterdam  and  innovations  in  mobility  Since  July  2014,  the  City  of  Amsterdam  has  had  a  chief  technology  officer  (CTO).  As   an   advisor   and   facilitator,   the  CTO  has   a   flywheel   effect,   helping   the   city   to  comprehend  complex  urban  issues,  to  choose  a  focus,  to  connect  different  parties,  and  to  formulate  an  approach  and  strategies  in  the  area  of  smart  mobility,  among  others.      Cities   are   under   increasing   pressure.   People   are  migrating   to   the   cities,  where  they   are   eager   to   live,  work,   and  enjoy   themselves.     This   growth  means   added  pressure   on   the   traffic   and   transport   both   within   and   to   and   from   the   city.  Amsterdam  will  continue  to  grow  in  the  coming  years,  and  so  will  the  traffic  and  transport  there.  As  CTO  Ger  Baron  puts  it:  “The  big  challenge  is:  how  do  we  keep  Amsterdam   accessible,   ensure   good   air   quality,   and   keep   the   public   spaces  attractive,   so   that   the   quality   of   life   in   the   city   and   the   draw   of   the   city   will  improve?”  (translated  from  the  Dutch;  source:  Gemeente  Amsterdam,  2015d).  As   the  most   important   trends,   the  CTO  sees:   the   Internet  of  Things,   the   rise  of  connected   vehicles   and   smart   infrastructure,   capacity   sharing,   using   real   time  (open)  data  for  precision-­‐guided  logistics  alternative  fuels.  The  CTO  matches  urban  mobility   issues  with   the  knowledge  already  present   in  the   city   in   projects   such   as   the   urban  mobility   lab   (AMS   Institute),   ALLEGRO,  SELF  STAD  self-­‐driving  cars  and  bicycles.  The  Amsterdam  University  of  Applied  Sciences  (HvA)  is  involved  in  a  number  of  these  studies  as  a  knowledge  partner.    

Page 7: Citylogistics: working on livable cities

  7  

European  perspective  The   future   of   city   logistics   is   being   carefully   considered   at   the   European   level  (ALICE/ERTRAC,  2015).  Europe   is  a   largely  urban  continent;   some  359  million  people   (72%  of   the   total  EU  population)   currently   live   in  urbanized  areas.  The  share  of   the  population   that   lives   in   cities   continues   to   grow  and  will   reach  as  much  as  80%  by  2020.  Cities  are  not  only  the  places  where  goods  are  delivered,  but  also  where  shipments  originate.  Outgoing  transport  represents  between  20  and  25%  of   the   transport  mileage   in  urban  areas,   incoming   freight  amounts   to  between  40  and  50%,  and  the  rest  both  originates  in  and  is  delivered  to  locations  within   the   city   itself   (ALICE/ERTRAC,   2015).   Waste   transport   also   forms   a  significant  share  of  city  logistics.      The   transport   of   freight   in   cities   leads   to   congestion,   poorer   air  quality,  problems  with  noise  and  a  lack  of  safety.      

   The   transport   of   freight   in   cities   with   trucks   and   delivery   vans   leads   to  congestion.   Other   problems   include:   poorer   air   quality,   noise   pollution,   and   a  lack   of   safety   (MDS   Transmodal,   2012;   Taniguchi   et   al.,   2015).   In   Europe,   city  logistics  is  responsible  for  25%  of  the  transport-­‐related  CO2  emissions  and  30  to  50%  of  the  remaining  transport-­‐related  air  pollution  (PM,  NOx,  etc.)  Within  the  OECD,  the  transport  sector  is  the  largest  consumer  of  energy  in  general  and  of  oil  in  particular  (OECD,  2015).    Even   though   the  number  of   freight  vehicles   is   limited,   they  are   relatively  more  often   involved   in   accidents   with   pedestrians   and   bicyclists.   As   city   logistics   is  responsible   for   a   significant   share   of   the   ambient   noise   in   cities,   it   also  

Page 8: Citylogistics: working on livable cities

  8  

inconveniences   residents   during   the   night.   The   utilization   rate   of   city   logistics  vehicles  is  low.  According  to  Transport  for  London,  for  example,  delivery  vans  in  that   city   have   an   average   utilization   rate   of   about   38%.     These   negative  consequences  of  city  logistics  have  a  direct  impact  on  the  appeal  and  livability  of  cities  (ALICE/ERTRAC,  2015).      Smart  and  zero-­emission  city   logistics  should  contribute  to  more  livable   and   appealing   cities   with   cleaner   vehicles   that   better  match  the  size  of  the  city,  but  also  to  the  consolidation  of   freight  flows   and   the   use   of   waterways   for   transporting   goods   to   and  from  the  city.    A  more  finely  meshed  network  The  urgency   to  promote  smart  and  zero-­‐emission  city   logistics   is  growing.  City  logistics   is   becoming  more   finely  meshed   and  more   frequent   (Taniguchi   et   al.,  2015).   And   that,   in   turn,   is   putting   increasing   pressure   on   the   city:   there   are  more  shipments,   involving  more  vehicles.  A  more  finely  meshed  network  is  the  result  of  developments  such  as  the  following:    

• The   growth   of   omnichannel   retailing,   with   home   delivery   and   pick-­‐up  points,   the   increase   in   sales   transacted   between   consumers   themselves,  and  the  sharing  economy  (Weltevreden  &  Rotem-­‐Mindali,  2009;  Visser  et  al.,   2014).   Consumers   who   also   want   shorter   delivery   times   and   more  delivery  options.  

• The  growth  of  e-­‐commerce  in  B2B  markets  (Forrester,  2015).  • The  return  of  stores  from  the  outskirts  of  town  to  inside  the  city.  Among  

others,  IKEA  and  Praxis  are  opening  stores  in  the  city  (NOS,  2015).  • The   faster   exchanges   of   collections   in   retail   stores,   especially   in   the  

fashion  branch  (Barnes  &  Lea-­‐Greenwood,  2010).  • The   rise   of   nano   stores   such   as   Albert   Heijn   To   Go   (Blanco   &   Fransoo,  

2013).  • The  growth  of  the  inner-­‐city  renovation  market  in  the  construction  sector  

(RESIDE,  2015).  • The  linking  of  return  flows  from  the  city  with  the  circular  economy  (Soto  

et  al.,  2015).  • The   servicification   of   products,   which   leads   to   more   service   provision.  

(Eckerdal,  2012).  • The  growth  of  3D  printing,  which  leads  to  local  production,  which  in  turn  

needs  raw  materials  in  small  amounts  (Janssen,  2014;  Taniguchi,  2015).  • The  growing  number  of  urban  seniors  who  need  home  care  (Hogeschool  

van  Amsterdam,  2015b).    

Page 9: Citylogistics: working on livable cities

  9  

 

2.     Measures  for  city  logistics        Local   and   national   authorities   play   an   active   role   in   regulating,   coordinating,  facilitating,   and   stimulating   city   logistics   (MDS   Transmodal,   2012;   Vlaamse  Ministerie  van  Mobiliteit  en  Openbare  Werken,  2013;  Quak  et  al.,  2014b).  Table  1  shows  the  measures  that  such  authorities  can  take.  Research  is  being  done  at  the  European   level   on   the   effectiveness   of   measures   for   the   various   different  stakeholders  (MDS  Transmodal,  2015).      Measures   Examples  Regulation   Delivery  windows  

Vehicle  restrictions  Low-­‐emission  zones  

Market  forces   Internalization  of  external  costs:  -­‐ pricing  -­‐ mobility  points  -­‐ time-­‐based  charges  (vignettes)  

Subsidies  for  zero-­‐emission  vehicles,  bicycle  couriers,  and  transport  by  water  or  rail  Fiscal  policy  

Spatial  planning   Redevelopment  of  (new)  areas  Creation  of  pick-­‐up  points  for  e-­‐commerce  shipments  Loading  and  unloading  facilities  Access  for  transport  by  water  and  rail  Facilitating  urban  consolidation  centers  Charging  infrastructure  for  electric  vehicles  

Infrastructure   Loading  and  unloading  facilities  on  the  street  Loading  and  unloading  facilities  on  the  water  or  the  rails  Parking  locations  for  heavy  construction  traffic  

Technology   Intelligent  transport  systems  Dynamic  traffic  management  Green  wave  traffic  signaling  for  heavy  traffic  Virtual  loading  and  unloading  bays  Open  data  and  local  traffic  control  data  

Other   Granting  of  privileges  Enforcement  Consolidation  of  demand  via  urban  consolidation  centers  and  coordinated  (public)  procurement  Certification  of  carriers  Management  of  construction  logistics  using  the  accessibility,  livability,  safety,  and  communications  (ALSC)  framework  Subsidies  for  urban  consolidation  centers  Early-­‐morning  and  late-­‐night  deliveries  and  stimulating  silent  vehicles    Preferred  routes  for  heavy  freight  traffic  Incentives  for  research  programs,  expertise  development,  and  business  networks  Public-­‐private  partnerships  

 Table  1.  Government  measures  with  regard  to  city  logistics  

Page 10: Citylogistics: working on livable cities

  10  

Stakeholders  The   following   are   all   stakeholders   in   sustainable   city   logistics   (Macharis   &  Bernardini,  2015):    

• residents,  who  want  to  have  clean  air,  safety,  and  no  undue  noise  • visitors,   who   come   to   the   cities   for   recreation   and   do   not   want   to   find  

streets  filled  with  freight  traffic  • companies,   which   depend   on   smooth   logistics   in   order   to   run   their  

businesses  • shippers   and   transport   companies,   who   bring   goods   into   the   cities   day  

after  day,  preferably  at  the  lowest  possible  cost  • the   government,   which   is   responsible   for   the   making   sure   the   carries  

responsibility  for  the  draw  of  the  city  • real  estate  owners,  project  developers  and  investors,  who  want  to  receive  

a  decent  return  on  their  investments  in  homes  and  commercial  properties  • politicians,  who  want  to  be  re-­‐elected  every  four  years.  

 City  logistics  in  a  historical  perspective  The  first  plans  for  urban  distribution  centers  in  the  Netherlands  were  developed  in  the  early  1990s.  The  consulting  firm  Coopers  &  Lybrand  (Coopers  &  Lybrand,  1991;   Van   Aken   et   al.,   1993)   did   research   on   urban   distribution   centers   in  Maastricht,   Amsterdam,   and   Alkmaar,   among   other   locations.   In   subsequent  years,  those  studies  were  followed  by  stacks  of  reports  on  other  municipalities,  including   Breda,   Oosterhout,   Utrecht,   and   Amersfoort,   on   the   Stadsbox   (“City  box”)   initiative   (Groothedde  &  Rustenburg,  2003),  on  a  cargo   tram,  beer  boats,  and  freight  transport  by  canal  in  Amsterdam,  on  the  work  of  Binnenstadservice  (a   city   logistics   service   center)   in   various  municipalities,   and   on   subsidies   for  electric  vehicles.      Quak’s   dissertation   (2008)   provides   an   overview   of   the  most   important  Dutch  initiatives  and  literature  in  this  regard.  He  concludes  (in  Dutch):    

 The   extent   to   which   initiatives   will   be   successful   in   practice   depends   on   the  relationship   between   the   initiators,   the   incentive   to   participate   in   initiatives,   and  the  dominant  actors.  If  the  initiator  is  not  the  most  dominant  actor,  an  initiative  can  only  be  implemented  successfully  in  practice  if  the  actor  who  is  supposed  to  change  his   behavior   actually   stands   to   benefit   from   it.   Another   option   is   to   legally   oblige  that   actor   to   adapt   his   behavior.   Among   local   authorities,   there   is   only   limited  knowledge  of  the  logistics  operations  of  transporters.  In  the  same  way,  transporters  know   little   about   the   issues   regarding   sustainability   in   cities.  Moreover,   the   near  lack  of  any  communication  between  transporters  and   local  authorities  means  that  these   public   and   private   actors   rarely   ever   get   any   real   insight   into   each   other’s  problems.   An   initiative   is   doomed   to   fail   if   its   initiator   is   unable   to   estimate   the  consequences  of  the  initiative  beyond  the  scope  that  he  defined  for  it.  Higher  levels  of  government  are  hardly  ever  involved  in  initiatives  for  a  sustainable  distribution  of  goods.  The  initiatives  described  in  the  academic  literature  have  not  always  been  successful  in  practice.    

 Cargohopper  Amsterdam  

Page 11: Citylogistics: working on livable cities

  11  

In   its   first   nine   months,   the   four   electric   delivery   trucks   of   Cargohopper  Amsterdam  managed  to  deliver  more  than  a  million  kilograms  of  freight,  saving  the  company  7,000  liters  of  diesel  fuel.    “We   are   very   happy   with   this   result,”   says   Ron   Klein   Tiessink,   director   of  Cargohopper,   on   the   website   of   trade   journal   Truck   &   Transportmanagement.  Since   the   delivery   service   began   using   electric   trucks   in   March   2014,   the  company   has   made   nearly   34,000   deliveries.   In   the   process,   the   concept   has  more  than  proved  itself,  according  to  Klein  Tiessink.    The  electric  urban  distribution  has  prevented  the  emission  of  18,400  kilograms  of   CO2.   At   the   same   time,   the   emissions   of   particulate   matter   and   nitrogen  compounds   (NOx)   have   been   reduced.   Since   Cargohopper   consolidates   its  shipments   in   a   smart   way,   the   company   also   manages   to   reduce   the   average  distance  driven  for  each  individual  delivery.  That  means  that  the  actual  savings  in  terms  of  fuel  consumption  and  emissions  are  even  higher.    Klein   Tiessink   thinks   it’s   a   shame   that   there   are   still   only   seven   of   the  Cargohopper   trucks   he   developed   being   used   in   Amsterdam,   Enschede,   and  Utrecht.  He  is  pleased  with  all  the  attention  it  has  received,  but  he  would  prefer  to  see  the  market  speed  up  its  development.  “Zero-­‐emission  urban  distribution  is  only  going  to  work  when  it  stops  being  something  out  of  the  ordinary.  The  latest  generation  of  heavier   electric   vehicles   should  be   available   for  purchase   from  a  dealer.”    If  the  market  would  have  a  need  for  700  trucks,  it  would  already  be  possible  to  scale   up   to   series   production,   says   Klein   Tiessink.   That   is   an   absolute  prerequisite.   Only   then   can   the   price   come   down   far   enough   that   companies  would  be  able  to  buy  such  a  truck  without  a  subsidy.    The   Cargohopper   director   hopes   that   cities   both   in   the   Netherlands   and  internationally   will   begin   pursuing   a   common   policy.   “Only   then  will   there   be  sufficient   demand   for   the   right   heavier   electric   trucks,   which   would   make   it  interesting  for  the  industry  to  develop  those.    Source:  Truck  &  Transportmanagement,  January  23,  2015    

Page 12: Citylogistics: working on livable cities

  12  

 

3.     International  research      On  the  European  level,  research  is  being  conducted  in  programs  such  as  Bestuffs,  Bestfact,   Straightsol,   Sugar,   Smartfusion,   Citylog,   Civitas,   Frevue   (on   electric  transport),   CoE-­‐SUFS,   Lamilo,   ALICE/ERTRAC   and   Smartset.   Also   elsewhere  around  the  world  there  are  comprehensive  research  programs.    With   regard   to   the   evaluation   of   European   pilot   projects,   Balm   et   al.   (2014)  conclude:    

 The   number   of   initiatives   that   aim   to   improve   urban   freight   transport   grow   (sic)  rapidly.  To  make  sure  that  the  obtained  results  grow  (sic)  as  fast  as  well,  we  should  make  sure  that  we  do  the  right  things  and  that  we  know  how  (sic).  To  avoid  wasting  money,   effort,   and   time   on   implementing   measures   and   initiatives   that   will   not  (likely)   be   successful   in   the   future,   knowledge   transfer   across   cities   is   very  important.  The  knowledge  should  be  based  on  a  transparent  evaluation,  identifying  the  relevant  impacts  and  measurable  indicators  that  represent  the  key  objectives  of  all   stakeholders.   As   there   is   not   one   problem   owner   of   urban   freight   transport  issues  (sic),  such  a  thorough  evaluation  is  often  lacking.    

On  the  evaluation  of  projects,  Quak  et  al.  (2014)  claim:      

Small  scale,  local  demonstrations  of  which  the  outcomes  are  considered  to  be  only  appropriate  within  a  specific  context  occur  quite  often  in  the  field  of  city   logistics.  Various   local   demonstrations   usually   show   a   solution’s   technical   and   operational  feasibility.  These  often  subsidized  demonstrations  do  not  have  long-­‐term  potential  due  to  the  lack  of  thought  on  (sic)  their  business  models,  i.e.  the  financial  feasibility.  To  make  a  solution  really  work  in  practice  a  viable  business  model  is  required.    

Vahrenkamp  et  al.  (2013)  conclude:    

As  a  main  result  of  the  city  logistic  (sic)  projects  over  the  past  25  years  one  has  to  state   that   traffic   reduction   and   economic   gains   of   consolidation   were   only   small  (sic).   The   gains   do   not   cover   the   costs   the   projects   impose.   To  make   the   projects  economic  (sic)  feasible  the  cities  had  to  carry  a  share  of  the  cost.  This  was  the  case  for  all  Urban  Consolidation  Centre  (UCC)  solutions   in   the  UK,  France,  Netherlands  and   Italy.   The   weak   position   of   UCC   became   evident   when   public   money   was  canceled  and  the  UCC  had  to  stop.    

Many   initiatives   for   city   logistics   started   out   with   government  subsidies.   When   the   government   funding   dried   up,   that   would  often  mean  the  end  of  the  initiative  as  well.  

Page 13: Citylogistics: working on livable cities

  13  

   Many  projects  failed  Unfortunately,  most   of   city   logistics   projects   have   been   unsuccessful   and   have  ended   up   dying   a   premature,   quiet   death.   Generally   speaking,   there   are   five  reasons  for  this:    

1. They  were  developed  on  the  basis  of  the  wrong  data  about  city  logistics.  Many  initiatives  focused  on  retail  distribution,  which  accounts  for  only  a  small  share  of  city  logistics  and  often  already  involves  consolidation.  Until  a   few   years   ago,   the  major   flows   such   as   construction  materials,  waste,  and   catering   supplies   remained   out   of   the   picture,   which   essentially  meant   that   no   visible   results   were   achieved   in   terms   of   improving   city  logistics.    

2. The  proposed  solutions  were  unattractive  for  the  customers.  As  a  result  of  logistics   consolidation   centers   (such   as   urban   distribution   centers)   the  delivery  ended  up  taking  longer.    

3. The  city  logistics  solution  ended  up  being  more  expensive  for  the  shippers  than  the  existing  solution.  The  entire  chain  –  from  the  distribution  center  all  the  way  to  the  delivery  in  the  city  –  was  not  well  thought  out.  Solutions  were  often  only  developed  for  the  last  mile  on  entering  the  city.  

4. The   business   model   for   city   logistics   was   not   sound.   And   because   the  business  model  was  not  sound,  a  critical  mass  was  never  achieved.  

5. The  local  political  situation  proved  volatile,  which  meant  the  local  playing  field  for  city  logistics  changed  every  four  years.  

 This   brief   analysis   of   the   bottlenecks   for   city   logistics   also   indicates   the  conditions  for  successful  future  solutions:    

1. Focus  solutions  on  the  major  flows  of  goods  within  cities.  2. The  receiving  party  should  never  be  worse  off  in  any  case.  3. The  solution  should  not  be  more  expensive  for  the  chain.  4. There   needs   to   be   a   sound   business   model   for   city   logistics   service  

providers.  5. There  needs  to  be  continuity  in  local  and  national  policy  in  terms  of  city  

logistics.    European  vision  for  2050  On  the  one  hand,  Europe  needs  to  provide  for  the  still-­‐growing  need  for  mobility  and  freight  transport,  but  on  the  one  hand,  it  also  needs  to  ensure  a  substantial  reduction   in  greenhouse  gases  and  other  harmful  emissions  as  well  as   in  noise  pollution   (European   Commission,   2011).   The   dependence   on   oil   must   be  decreased,  while   at   the   same   time  maintaining   a   high   level   of   efficiency   in   the  transport  system.  This  calls  for  radical  changes  in  the  system,  based  on  smarter,  cleaner,  and  safer  transport  solutions.    ERTRAC   (European   Road   Transport   Research   Advisory   Council)   and   ALICE  (Alliance   for   Logistics   Innovation   through   Collaboration   in   Europe)   have   put  together   a   roadmap   for   research   on   city   logistics   (ALICE/ERTRAC,   2015).   The  

Page 14: Citylogistics: working on livable cities

  14  

aim  of  this  roadmap  is  to  set  the  research  priorities  in  relation  to  city  logistics.  In  the   logistics   vision   of   ALICE,   which   covers   the   period   until   2050,   the   main  ambition   is   the   development   of   the   so-­‐called   Physical   Internet   (Ballot   et   al.,  2014).  To  achieve  that  ambition,  two  proposed  lines  of  research  form  the  basis  for   the   logistics  projects  within   the  EU  Horizon  2020   research  program.  These  are:  a)  sustainable  and  safe  supply  chains,  and  b)  coordination  and  collaboration  in   global   supply   networks.   The   research   will   focus   on   corridors,   hubs   and  synchromodality,  city  logistics,  and  information  systems  for  connecting  logistics  systems   within   the   chain.   The   participants   in   ALICE   are   companies,   research  institutes,   national   governments,   and   innovation   partners.   The   roadmap  (ALICE/ERTRAC,  2015)  has  four  objectives:    

1. Decarbonization:   energy   efficiency   can   be   achieved   by   making   city  logistics  more  efficient   (for  example  by   consolidation  deliveries)  and  by  using  zero-­‐emission  and  energy-­‐efficient  vehicle  technology  (Stanislaw  et  al.,   2014).   One   condition   for   the   introduction   of   electric   vehicles   is   the  implementation   of   a   charging   infrastructure  with   rapid   charging   points.  Smart  city   logistics  concepts  can  compensate  for  the  extra  costs  of  using  electric  vehicles  for  the  transportation  of  goods  by  raising  the  utilization  rate,   by   reducing   the  number  of  miles  driven   and   the  number  of   empty  runs  made,  and  by  preventing  hours  from  being  lost.    

2. Livability  and  the  quality  of  the  environment:  the  research  is  expected  to  help  improve  the  air  quality  in  European  cities  and  to  reduce  noise  levels.  The  factors  contributing  to  local  air  pollution  can  differ  significantly  from  city  to  city,   just  as  the  relative  share  of  transport  as  a  cause  of  urban  air  pollution  also  varies  from  place  to  place.  The  goal  is  to  reduce  particulate  matter  by  80%  and  NOx  by  90%  in  the  period  from  2010  until  2030.  It  is  possible  to  improve  air  quality  by  reducing  the  emissions  of  the  vehicles  themselves   by   applying   higher   emission   standards,   by   using   smart   city  logistics  concepts,  and  by  local  traffic  management.  The  reduction  of  noise  emissions  in  connection  with  city  logistics  is  important  due  to  its  impact  on   the   health   of   the   citizens.   Quieter   vehicles   will   make   it   possible   to  make   deliveries   at   night.   This   will   require   not   only   a   reduction   of   the  noise   level   of   the   vehicles   themselves,   but   also   of   the   noise   from   the  loading  and  unloading  of  goods.    

3. Reliability:  city  logistics  is  only  effective  when  the  goods  are  delivered  to  the   expected   delivery   point   and   at   the   expected   delivery   time.   With  regard   to   business-­‐to-­‐business   (B2B),   the   percentage   of   effective  deliveries   is   already   around   95%.   For   business-­‐to-­‐consumer   (B2C)  deliveries   in   the  urban  environment,   that   is  currently  only  70%  to  75%.  The  reliability  will  need  to   improve  substantially  with  an  eye   to   the   fast  growth  of  e-­‐commerce  (Van  Duin  et  al.,  2015;  EY,  2015).  

4. Safety:   there   is   growing   concern   about   the   number   of   injuries   and  fatalities   involving   trucks   and  more   vulnerable   road   users   in   the   urban  environment.   The   European   Union   has   ambitious   goals   in   relation   to  traffic  safety.  Some  cities  have  already  adopted  Vision  Zero  as  their  policy  objective.  The  roadmap  focuses  research  on   infrastructure,  vehicles,  and  human   behavior.   Besides   traffic   safety,   there   is   also   attention   for   safe  deliveries  with  less  theft  and  damage.    

Page 15: Citylogistics: working on livable cities

  15  

4.   Supply  chain  perspective      In  the  effort  to  realize  these  objectives,  city  logistics  should  be  seen  as  a  link  in  the  logistics  chain,  with  the  end  user  as  the  primary  end  point  (which,  based  on  the   notion   of   circularity,   is   also   a   potential   new   starting   point).   A   holistic  approach  should  be  followed  in  order  to  understand  what  can  be  done  upstream  to  optimize  the  logistics  chain  and  to  have  it  link  up  with  city  logistics.      City  logistics  lies  at  the  end  of  an  integrated  logistics  chain:  from  field  to  fork.    Three   technological   developments   in   transport   and   distribution   are   going   to  fundamentally   change   the   existing   distribution   networks:   the   Trans-­‐European  Transport  Networks  (TEN-­‐T),  the  autonomous  trucks  that  will  carry  goods  safely  and  reliably  across  the  TEN-­‐T,  and  the  innovations  in  warehouse  automation.    

1. TEN-­‐T:  international  transport  links.       In   the   framework  of   the  TEN-­‐T  program,   the  European  Commission  has  

designated  ten  international  transport  links  –  the  “core  network  corridors”  –  that  are  to  be  fully  built  up  and  improved  with  EU  funding  through  2030.  These  concern  innovative  transport  links  on  water,  rails,  and  roads.  

    The  aim  is  to  further  strengthen  the  European  transport  infrastructure  –  

and   the   intelligent   transport   and   traffic   management   systems   that   go  along  with   that   –   and   to   lower   transport   costs   in   the   process.   On   these  safe   and   robust   core   network   corridors,   goods   can   find   their   way   –  uninterrupted,   but   especially   also   reliably   –   between   Europe’s   major  production  and  consumption  areas.  This   is   the  preferred  network  of   the  future.  

 2. Platooning:  autonomous  driving.       Unmanned   trucks   are   getting   closer   and   closer.   The   use   of   wireless  

technology  to  connect  to  a  road  train  –  a  manually  steered  lead  truck  with  a  column  of  vehicles  behind  it  –  is  already  technically  possible.  These  road  trains  are  going  to  need  to  have  sufficient  volume  and  frequency.  That  will  require   enormous  distribution   centers  where   logistics   service  providers  can   consolidate   transport   flows   from   different   sectors   of   industry   to  deliver   –   with   a   high   frequency   and   great   reliability   –   to   distribution  centers   downstream   in   the   chain,   closer   to  major   consumption   centers:  urban   consolidation   centers.   Those   DCs   will   need   to   be   strategically  connected  with  these  nodes  of  the  TEN-­‐T  network.  

 3. Dark  stores:  robots  in  warehouses.       Faster,   more   frequent   and   more   finely   meshed   delivery   calls   for   the  

mechanization   of   order-­‐picking   activities   in   distribution   centers:   dark  stores.  With  new  technology  such  as  Amazon’s  picking  robots,  automatic  case  picking,  RFID,  GS1  standards   for   things   like  pallet   labels,  dock-­‐and-­‐

Page 16: Citylogistics: working on livable cities

  16  

roll,   and   pick-­‐by-­‐voice,   the   productivity   in   distribution   centers   is  increasing   in   leaps   and   bounds.   Distribution   centers   where   employees  gather  900  to  1,200  order   lines  an  hour  are  no   longer  exceptions.  Those  investments   can   only   be   earned   back   in   distribution   centers   with  sufficient  scale.  

  Ten  years  ago,  experts   still   thought   that  distribution  centers  couldn’t  be  any  larger  than  50,000  square  meters.  Warehouses  larger  than  that  were  thought   to   be   less   efficient.   In   the   meantime,   recent   examples   from  Zalando,   Action,   Nike,   and   Zara   have   shown   that   efficient   distribution  centers  can  easily  be  as  big  as  150,000  to  300,000  square  meters.  

 

   The  distribution   centers  of   the   future  will  be   located  at   strategic  points  within  the  TEN-­‐T  network.  They  will  consolidate  freight  flows  from  many  shippers  and  have   fully   mechanized   internal   processes.   The   distribution   centers   will   be  interconnected  with   advanced   systems   for   the  minute-­‐by-­‐minute   planning   and  steering   of   the   operational   processes   with   transport   management,   warehouse  management,   and   traffic  management:   sense   and   respond.   Control   towers  will  see   to   the   tactical   coordination   of   the   flows   of   goods   and   capacities   in   the  distribution  network:  predict  and  prepare.      These  developments  will   have   consequences   for   the   city   logistics   at   the  end  of  the  logistics  chain  and  thus  also  for  local  spatial  planning  (Dablanc,  2014).  More  and  more   often,   urban   consolidation   centers   on   the   edges   of   cities  will   be   the  points  where  slow  mobility,  aimed  at  efficiently  consolidated  freight  flows,  turns  into  valuable  personalized  mobility,  aimed  at  the  needs  of  the  receiver.      The  pressure  to  improve  the  air  quality  in  urban  areas  is  an  important  incentive  for   the   use   of   electric   vehicles.   That   means   that   more   shipments   are   being  transferred   to   these  electric  vehicles  at   consolidation  centers  within  or  around  the  city.      An  urban   consolidation   centers   functions   as   a   lynch  pin   and  pivot  point   in   the  logistics  chain  for  physical,  information,  and  financial  flows,  but  that  only  works  properly  with   a   corresponding   organizational   structure.   Important   ingredients  for   the   organization   model   are   the   neutral   director’s   role   that   can   serve   the  

Page 17: Citylogistics: working on livable cities

  17  

interests  of  every  shipper,  transporter,  distributor,  and  receiver,  and  the  national  coverage   of   uniform   services   combined   with   local   situation   (Guis,   2014). This  transfer-­‐of-­‐goods   function   needs   to   be   integrated   into   the   logistics   chain  with  multiple  parties.  Different  business  models,  new  processes,  and  technologies  will  need   to   be   investigated   and   implemented.   The   city   logistics   systems   are  becoming   more   and   more   integrated   with   both   horizontal   and   vertical  collaboration  between  parties.  Such  a  development  needs   to  have  attention   for  intermodal  and  multimodal  solutions  for  city  logistics  (for  example  the  shipping  of  products  via  inland  waterways  to  the  edges  of  the  city).    More  and  more  vehicles  are  connected  with  each  other  and  with  road  authorities,  for   example   via   cooperative   intelligent   transportation   systems   (ITS-­‐C).   With  traffic  management,  this  can  result  in  better  freight  traffic  flows.      Finally  one  should  not   forget   that   the   freight   traffic   in  cities   is   the  result  of   the  behavior   of   customers   in   those   cities.   The   development   of   the   city   and   the  lifestyle  of  the  people  who  live  there  both  have  a  major  impact  on  city  logistics.  Factors   such   as   the  development   of   teleworking,   an   aging  population,   housing,  and  the  growth  of  omnichannel  retail  have  major  consequences  for  city  logistics  (ALICE/ERTRAC,   2015).   Digitization   may   also   offer   opportunities   to   put   the  client   behind   the   steering   wheel   in   organizing   city   logistics   more   efficiently.  AH.nl   allows   customers   to   choose   a   delivery   time   themselves.   By   charging  different  prices  for  the  different  delivery  times  (ranging  from  €4.95  to  €12.95),  AH.nl  leads  its  customers  by  the  hand  through  the  logistics  process.  And  in  doing  so,   AH.nl   is   managing   to   optimize   its   own   home-­‐delivery   process   quietly   and  dynamically.        

Page 18: Citylogistics: working on livable cities

  18  

 5.   City  logistics  as  we  head  towards  2050      The  ALICE/ERTRAC   (2015)   report   contains   12   roadmaps   that  were  developed  for  the  research  themes  for  the  coming  decades:    

1. Identifying  and  assessing  opportunities  in  urban  freight.  2. Towards   a   more   efficient   integration   of   urban   freight   in   the   urban  

transport  system.  3. Understanding  the  impact  of  land  use  on  urban  freight  activities.  4. Enabling  more  efficient  movements  of  goods  through  the  management  of  

the  infrastructure.  5. Improving   the   interaction   between   long   distance   freight   transport   and  

urban  freight.  6. Better  adapting  the  vehicles  to  innovative  urban  freight  delivery  systems.  7. Value  creation  logistics  services  and  more  efficient  operations.  8. E-­‐commerce   implications:   Direct   to   consumer   deliveries   and   functional  

logistics  services.  9. Reverse  logistics  and  transport  of  waste  and  recycling  material.  10. Designing  and  operating  urban  freight  delivery  infrastructures.  11. Safety  and  security  in  urban  freight.  12. Cleaner  and  more  efficient  vehicles.  

 Netherlands  2020–2025:  Green  Deal  Zero  Emission  Urban  Logistics  The   Top   Sector   Logistics’   2016–2020  multiyear   program   (Topsector   Logistiek,  2015)   also   gives   attention   to   city   logistics.   The   collaboration   between   all   the  different   parties   involved   in   city   logistics   is   currently  most   evident  within   the  Green   Deal   Zero   Emission   Urban   Logistics   (GDZES)   program.   The   basis   of   the  GDZES  lies  in  the  Agreement  on  Energy  for  Sustainable  Growth.    That   Agreement  states   (in   Dutch):   “In   2014,   parties   intend   [...]   to   conclude   a   Green  Deal   about  zero-­‐emission   city   logistics   that   will   facilitate   and   give   direction   to   regional  pilots.”   In   this   context,   zero-­‐emission   city   logistics   refers   in   any   case   to   the  reduction   of   CO2   emissions   resulting   from   city   logistics   to   zero,   but   preferably  also  to  the  reduction  of  NOx,  particulate  matter,  and  noise  emissions  in  the  city  centers  resulting  from  city  logistics  to  practically  zero.    Parties   to   the  GDZES  have   the  goal  of  achieving  emission-­‐free  deliveries   in  city  centers   by   2025.   These   parties   include   the   Dutch   national   government,  municipalities,  industry  associations,  knowledge  institutions,  shippers,  transport  and  distribution  companies,  fuel  suppliers,  and  vehicle  producers.    By  means  of  Living  Labs,  parties  are  working  together  to  come  up  with  workable  operational  solutions.  The  projects  have  to  do  with  vehicle  technology,  the  use  and  loading  of  trucks,  and  the  initiation  of  innovative  city  logistics  projects.    With   its  action   line   for   city   logistics,   the  Top  Sector  Logistics  wants   to   connect  with   this  Green  Deal.   Considering   that   city   logistics   has   a  major   impact   on   the  accessibility   and   the   broader   quality   of   life   in   the   city,   both   of  which   form   the  

Page 19: Citylogistics: working on livable cities

  19  

focus   of   the   current   Dutch   government’s   Agenda   Stad   (“Urban   Agenda”),   the  action  line  for  city  logistics  will  form  a  link  to  that  agenda.      While  there  has  been  no  large-­‐scale  production  of  zero-­‐emission  vehicles  to  date,  electric   delivery   vans   are   already   available   and   the   first   heavier,   custom-­‐made  zero-­‐emission   trucks   are   already   in   use.   In   addition,   prototypes   of   hybrid  vehicles  are  being  developed  that  can  use  conventional  fuels  on  the  motorways  but   travel   emission-­‐free   for   the   “last   mile”   within   the   city.   Despite   the   great  diversity   in   load  types  and  the  resulting  diversity  of  technical  specifications  for  vehicles,  relevant  developments  are  currently  under  way  for  all  types  of  supply  vehicles  that  are  being  used  on  a  large  scale,  each  one  proceeding  at  its  own  pace.  As   logistics   concepts   are   scaled   up   further,   the   parties   to   the   GDZES   want   to  boost  the  development,  availability,  reliability,  and  affordability  of  zero-­‐emission  vehicles.  By  now  there  are  many  opportunities  for  electric  vehicles  in  connection  with   city   logistics   (Stanislaw   et   al.,   2014)   and   their   use   is   being   monitored  (Nesterova  et  al.,  2013;  Pelletier  et  al.,  2014;  Hogeschool  van  Amsterdam,  2015d).    Besides  the  use  of  zero-­‐emission  vehicles,  a  reduction  in  the  number  of  vehicles  needed  to  bring  supplies  to  the  city  is  another  important  objective.  Some  goods  already  enter  the  city  in  efficient  ways.  That  is  especially  the  case  where  logistics  professionals  and  companies  have  organized  the  (consolidation  of)  freight  flows  with  transport  on  their  own  account,  as  with  the  stocking  of  supermarkets  and  chain  stores.  Also  the  distribution  of  e-­‐commerce  shipments  is  continually  being  optimized  by  the  larger  logistics  parties,  thanks  in  part  to  the  sound  agreements  that  are  being  made  with  receivers  (Van  Duin  et  al.,  2015).    In  contrast  to  the  efficient  flows,  by  far  most  transport  movements  are  known  to  work  with  a  low  utilization  rate  or  only  enter  the  city  to  deliver  small  shipments.  New   city   logistics   concepts   and  more   extensive   consolidation  make   the   use   of  zero-­‐emission   vehicles   and/or   the   use   of   clean   vehicles  with   a   high   utilization  rate  in  lieu  of  low  emissions  for  those  transport  movements  potentially  feasible  and  are  therefore  in  line  with  the  GDZES  objectives.  Amsterdam  has  it’s  own  deal  with  local  business  organization  and  research  institutions  called  ‘Slim  en  Schoon’.    

 

Page 20: Citylogistics: working on livable cities

  20  

 The  action  line  for  city  logistics  aims  to  reduce  CO2  emissions  by  5,000  kilotons  of  CO2  per  year.  Achieving  zero-­‐emission  city  logistics  through  a  combination  of  better   technology   and   more   efficient   logistics   will   require   organizational,  technological,  social,  financial,  and  legal  adjustments.  This  variety  of  factors  to  be  overcome,   in   combination   with   the   many   different   interests   of   stakeholders,  demands  an  innovative  approach.      The   first  phase  will   start   the  moment   the  Green  Deal  enters   into   force  and  run  until  2020.  In  this  initial  phase,  the  Green  Deal  will  focus  on  demonstrating  or  at  least   making   plausible,   via   Living   Labs,   that   zero-­‐emission   city   logistics   is  feasible,  from  a  technical,  economic,  and  enforcement  perspective,  for  a  specific  logistics   flow.   In   the   second  phase,  which   runs   until   2025,   the  Green  Deal  will  focus  on  scaling  up  the  demonstrated  concepts.      There  are  also  links  with  other  part  of  the  Top  Sector  such  as  the  application  of  knowledge   from   the   4C   roadmap   (for   cross   chain   control   centers),   the  development   of   new   business   models,   and   the   implementation   of   digital  exchanges   of   logistics   information   with   the   Neutral   Logistic   Information  Platform  or  NLIP  (Topsector  Logistiek,  2015).      

Page 21: Citylogistics: working on livable cities

  21  

 

6.   An  integrated  approach      Considering   the   Dutch   and   European   ambitions,   a   lot   of   innovation   will   be  required   of   shippers,   receivers,   logistics   service   providers,   and   governments  when   it   comes   to   city   logistics.   In   practice,   the   integrated   logistics   concept   is  often  used  in  dealing  with  such  innovative  logistics  issues  (Van  Goor  et  al.,  2014).  Local  and  supralocal  government  policy  is  another  key  factor  in  city  logistics.  For  that  reason,  government  policy  has  been  added  to  the  integrated  approach  of  city  logistics  (see  Fig.  1).    

 Figure  1:  Integrated  approach  to  city  logistics  (based  on  Van  Goor  et  al.,  2014).    External  and  internal  objectives  In   terms   of   the   external   objectives,   it   concerns   linking   up   with   the   logistical  needs   of   the   receiving   party   during   the   customer-­‐experience   cycle   (pre-­‐sales,  sales,   and   aftersales).   In   terms   of   the   internal   objectives,   it   concerns   the   costs  and  the  working  capital  that  are  involved  in  supplying  the  customers  in  the  chain.  These  are  the  framework  conditions  for  setting  up  a  distribution  network.      Especially   as   a   result   of   the   digitization   of   customers   and   the   changes   in  customer   behavior,   these   external   objectives   are   changing   (Shopping2020,  2014).   Consumers   are   buying   more   online.   With   the   advent   of   nano   stores  (Blanco   &   Fransoo,   2013),   shops   are   receiving   smaller   and   smaller   shipments  more  and  more  often.  To  be  able   to  compete  with  web  stores,   fashion  retailers  are   presenting   new   collections  more   and  more   often.     E-­‐commerce   in   the  B2B  market  is  only  now  really  starting  to  develop.  As  construction  sites  in  cities  get  

Page 22: Citylogistics: working on livable cities

  22  

smaller   and   smaller,   supplies   need   to   be   brought   in  more   often   and   delivered  right   on   time.   In   the   future,   seniors  who  want   to   keep   living   at   home  will   get  customized  healthcare  logistics  at  home.    Processes  For   deliveries   to   customers   in   cities,   there   are   several   types   of   possible  distribution  networks:      

• Directly  from  the  shippers  to  the  customer(s)  • Consolidation  of  freight  flows  of  shippers  upstream  in  the  logistics  chain.  • Consolidation   of   freight   flows   of  multiple   shippers   and   logistics   service  

providers  downstream  through  urban  consolidation  centers  • Consolidation   of   freight   flows   of  multiple   shippers   and   logistics   service  

providers  downstream  through  urban  consolidation  centers  • Consolidation  of   freight   flows  of  multiple   shippers   via   stores  or  pick-­‐up  

points  within  an  urban  area.    As   an   example,   the   possibilities   for   construction   logistics   are   given   in   Table   2  (Quak  et  al.,  2011).    Logistics  concept  

Load  characteristics   Transport  characteristics  

Solutions  

FTL  thick  flows  

Initial  phase  of  construction  projects  Sand,  gravel,  prefab  

Direct  delivery;  Out  full,  empty  back  

Preferred  network  for  construction  traffic;  Consolidation  of  extra-­‐urban  traffic;  Multimodal  Integrated  distribution  network  

LTL  thin  flows  

Pallets  (load  carrier)   Trucks  not  fully  loaded  (low  utilization  rate)  

Innovative  construction;  Consolidation  at  the  source;  Consolidation  at  an  urban  consolidation  center;  Outsourcing  of  construction  logistics  

Parcels   Parcels   Trucks  not  fully  loaded  (low  utilization  rate)  

Consolidation  at  the  source;  Consolidation  at  an  urban  consolidation  center;  Outsourcing  of  construction  logistics;  Mobile  storage  container  (construction  finishing  box)  

Rush  orders   Parcels   Ad  hoc,  rush  (very  low  utilization  rate)  

Outsourcing  to  courier;  Collection  points  

Returns   Clay,  rubble,  construction  waste  

Out  empty,  back  full  

Preferred  network  for  construction  traffic;  Consolidation  of  extra-­‐urban  traffic;  

Page 23: Citylogistics: working on livable cities

  23  

Multimodal  Integrated  distribution  network;  Combicontainer  for  moving  things  to  and  from  the  site.  

 Table  2.  Distribution  networks  for  construction  logistics  (Quak  et  al.,  2011).    Then  there  is  the  question  of  which  modality  or  modalities  are  used  for  transport  within  the  distribution  network  (e.g.  cargo  tricycle,  delivery  van,  truck,  or  boat)  and  which  fuel  technology  is  used.    

   Important   factors   in   setting   up   a   distribution   network   include:   the   company’s  strategy,   the   customer   demands   that   the   company   wants   to   respond   to,   the  desired  degree  of   flexibility,   the  margin  on  products,   the  production   cycle,   and  the   product   characteristics   such   as   value   density   and   packing   density   that  determine  the  distribution  costs  (Van  Goor  et  al.,  2014).    Planning  and  control  Tactical   and  operational  planning  and  control   ensure   that   the   shipments   reach  the   receiver   on   time   and  with   the   appropriate   use   of   resources.   Planning   and  control   concerns   decisions   about   the   deployment   of   personnel   and   the  scheduling  of  vehicles  and  warehouse  processes,  but  also  about  the  charging  of  electric  vehicles.   In   terms  of   city   logistics,   this  planning  and  control   covers   the  entire  chain,  often  involving  multiple  parties  that  work  together.  Data  alignment  in  logistics  chains  is  a  condition  for  the  sharing  of  planning  data.    Information  and  communications  technology  The   tactical   and   operational   planning   and   control   requires   data   about   the  shipments,   the   available   capacities,   and   the   routes:   transport   management  

Page 24: Citylogistics: working on livable cities

  24  

systems  (TMS).  These  systems  are  increasingly  linked  with  local  traffic  systems  of   the  government  that  give  relevant   information  about  traffic  using  open  data.  Giving   road   users   tailored   driving   recommendations   can   contribute   towards   a  better  flow  of  traffic,  and  road  users  will  also  be  prepared  to  adjust  their  driving  style  on  the  basis  of  those  recommendations.  Soon  the  receiver  will  get  real-­‐time  information   about   the   shipment   and   its   expected   arrival   time   and   can   even  change  the  delivery  address  while  the  shipment  is  already  under  way.      A   trend   in   the  development  of   ICT   is   the  advent  of   location-­‐based  applications,  agent-­‐based   software,   and   systems   for   the   exchange   of   freight   between  companies   (and   increasingly   also   between   private   individuals).   Well-­‐known  applications  include  Uber  and  GoGoVan.      Logistics  organization  In  terms  of  the  logistics  organization,  it  concerns  the  way  in  which  the  tasks  for  the  planning  and  control  of  the  transport  flows  are  anchored  in  the  organization,  the   competencies   of   the   employees   involved,   and   how   parties   in   the   logistics  chain  work  together.      Local  government  policy  Local   government   policy   determines   the   playing   field   by   means   of   delivery  windows,   vehicle   restrictions,   the   arrangement   of   public   spaces   (including  loading   and   unloading   bays),   late   night   and   early   morning   distribution,   low-­‐emission  zones,  the  amount  of  space  that   is  available  for   logistics  consolidation  centers,  the  available  charging  infrastructure  for  electric  vehicles,  the  number  of  quays  that  are  available  for  the  loading  and  unloading  of  boats,  and  the  open  data  that   is  made  available   for   local   traffic   control  and  dynamic   traffic  management  aimed  at  improving  the  flow.    Supralocal  government  policy  Among  other   things,  supralocal  government  policy  determines  hours-­‐of-­‐service  regulations,  vehicle  specifications,  and  the  availability  of  open  data  for  dynamic  traffic  management.    An   integrated   approach   to   city   logistics   also   requires   a   careful  consideration   of   the   business   model.   There   is   no   future   for  solutions  based  entirely  on  subsidies.    Earning  money  with  city  logistics  One  of   the  problems  in  the   implementation  of  new  concepts   for  city   logistics   is  the  lack  of  a  business  model:  they  don’t  earn  any  money.  As  Quak  &  Balm  (2014)  put  it:    

Page 25: Citylogistics: working on livable cities

  25  

     

Small  scale,  local  demonstrations  of  which  the  outcomes  are  considered  to  be  only  appropriate  within  a  specific  context  occur  quite  often  in  the  field  of  city   logistics.  Various   local   demonstrations   usually   show   a   solution’s   technical   and   operational  feasibility.  These  often  subsidized  demonstrations  do  not  have  long-­‐term  potential  due  to  the  lack  of  thought  on  their  business  models,  i.e.  the  financial  feasibility.  To  make  a  solution  really  work  in  practice  a  viable  business  model  is  required.  

 The   use   of   business   models   such   as   Canvas   (Osterwalder   &   Pigneur,   2010;  Turblog,  2011;  Pauli,   2014)   can   support   the  development  of   a  business  model.  The   Business   Model   Canvas   is   a   powerful   instrument   to   identify   the   business  model   in   a   transparent   and   comprehensible   way   (see   Fig.   2).   In   city   logistics,  these   business   models   also   often   have   characteristics   of   public-­‐private  partnerships.      

   Figure  2.  Business  Model  Canvas  (Quak  &  Balm,  2014).    

Page 26: Citylogistics: working on livable cities

  26  

     Checklist  for  the  Business  Model  Canvas    1.  Customer  Segments  What  specific  customer  groups  does   the  company  want   to  serve?  What  are   the  needs  of  those  customer  groups?    2.  Value  Proposition  What   distinctive   value   does   the   company   offer?   What   problems   does   the  company  help  to  solve?  Those  can  be  both  the  current  and  the  future  needs.  Why  should   these  customers  do  business  with   the  company   (and  not  with   someone  else)?  This  is  the  value  proposition.    3.  Customer  Relationships  How  does   the  company  maintain  contact  with   the  various  customer  segments?  How   does   each   aspecific   customer   segment   want   the   company   to   maintain  contact   with   them?  Which   type   of   contact   is   the   right   one   and   the  most   cost-­‐effective  for  each  segment?    4.  Channels  How   are   (groups   of)   customers   kept   abreast   of   the   range   of   services   offered?  How  do  they  best  experience  the  value  proposition?  How  can  they  buy  and  get  the  range  of  services  offered?    5.  Revenue  Streams  How   does   the   company   earn   money?   And   in   the   future?   How   can   it   develop  supplementary  sources  of  income?    6.  Key  Resources  Which   resources   are   essential   to   create   the   value   proposition?   To   maintain  customer  relationships?  To  get  new  customers?    7.  Key  Activities  Which  core  activities  are  essential  to  create  or  strengthen  the  value  proposition?  To  maintain  customer  relationships?  To  get  new  customers?    8.  Partners  Which   private   and   public   partnerships   are   essential   to   make   or   co-­‐create   the  offer  ?  Which  partners  are  crucial  to  ensure  even  more  success?    9.  Cost  Structure  Which   costs   are   essential   to   ensure   that   the  business  model  will  work?  Which  resources   and   core   activities   are   the   most   costly?   Which   costs   are   fixed,   and  which  are  variable?        

Page 27: Citylogistics: working on livable cities

  27  

 

7.   Applied  research      The   Faculty   of   Technology   at   the   Amsterdam   University   of   Applied   Sciences  (HvA)   has   a   research   program   that   extends   beyond   the   faculty   itself:   Urban  Technology.   As   one   of   the   spearhead   programs   of   the   HvA,   Urban   Technology  focuses   on   researching,   designing,   and   realizing   smart   solutions   for   the  challenges   that   major   cities   will   face   in   the   future.   In   this   broad   research  program,   the  Faculty  of  Technology  works   together  with   two  other   faculties  at  the  HvA:  Economics  and  Management  and  Digital  Media  and  Creative  Industries.    The  broader  Logistics  research  program  focuses  on  two  themes  that  are  closely  connected  with  Metropoolregio  Amsterdam  (MRA),  the  umbrella  organization  of  municipalities   that   form   the  Amsterdam  metropolitan   area:  Mainport   Logistics  and   City   Logistics.   The   Logistics   research   program   at   the   HvA   is   closely  connected  to  the  national  Centre  of  Expertise  Logistiek  (“Center  of  Expertise  for  Logistics”),  of  which  the  HvA  fulfills  the  role  of  secretary,  and  with  the  regional  KennisDC  (“Knowledge  Distribution  Center”)  in  Amsterdam.        Within   the   Urban   Technology   research   program,   the   City   Logistics   research  program  is  linked  to  the  research  theme  of  Smart  Mobility  &  Logistics.  The  focus  lies  on  designing   technological   solutions   for   sustainable  mobility   to   ensure   the  city   remains   accessible   and   connected.   The   research   program   is   also   linked   to  the  showcase  project  E-­‐mobility  and  City  Logistics,   in  which  researchers   in   the  Smart   Mobility   &   Logistics   and   Smart   Energy   Systems   programs   are   working  together   on   the   smart   use   of   electric   vehicles   for   urban   distribution   in   the  Amsterdam  metropolitan  area.      Applied  research  within  the  Faculty  of  Technology  Technology   helps   to   create   the  world   of   tomorrow.   That  will   require   research  that   is   related   to   practical   applications   and   problems   in   practice.   Applied  research  contributes  to  the  improvement  and  innovation  of  professional  practice,  to   the   quality   of   professional   education,   and   to   the   quality   of   teachers   and  students.   In   addition   to  preparing   students   to  be  knowledgeable  professionals,  conducting   applied   research   is   one   of   the   core   activities   through   which   the  Faculty  of  Technology  at  the  HvA  is  helping  to  create  the  world  of  tomorrow.      Applied  research  differs   from  classic   theoretical   research   in   that   it   investigates  practical   issues   from   the   field   and   involves   a   close   cooperation   with   the  professional  practice.  The  research   is  nevertheless  methodologically  sound  and  in   line  with   academic   knowledge.   Indeed,   the   added   value   of   applied   research  lies   in  the   fact   that  bridges  the  gap  between  theoretical  knowledge  and  day-­‐to-­‐day  professional  practice.    

Page 28: Citylogistics: working on livable cities

  28  

   Applied  research  has  four  characteristics:    

1. It  is  rooted  in  professional  practice  The  strength  of  applied  research  lies  in  large  part  in  the  way  it   is  set  up  and  carried  out:  in  close  cooperation  with  professional  practice  via  networks  and  collaborative  relationships.  The  research  being  done  at  the   Amsterdam   University   of   Applied   Sciences   (HvA)   has   a   clearly  recognizable  regional  dimension  thanks  to  its  connection  with  MRA’s  Kennis-­  en  Innovatieagenda  (“Knowledge  and  Innovation  Agenda”).  

 2. It  forms  a  bridge  between  science  and  professional  practice  

One   of   the   objectives   of   applied   research   is   to   translate   scientific  knowledge   into  professional   practice.   It   is   through   research   that   the  practical  applicability  of  scientific  insights  is  put  to  the  test  and  made  concrete.   As   such,   applied   research   plays   an   important   role   in  increasing   the   readiness   of   new   technologies   with   an   eye   to   their  market   introduction.   In  the  process,  applied  research  not  only  draws  from  the  body  of  knowledge  but  also  adds  new  knowledge  to  that.    

 3. It  is  methodologically  sound  

Applied   research   uses   sound   methods   and   meets   the   current  standards   in   terms   of   validity   and   reliability.   In   addition,   it   tries   to  make   the   results   generalizable   as   much   as   possible.   Part   of   the  research  takes  place  in  collaboration  with  research  universities,  other  universities   of   applied   sciences,   and   knowledge   institutions   such   as  the  Netherlands  Organisation  for  Applied  Scientific  Research  (TNO).  

 4. It  has  an  impact  on  society  

Applied  research  contributes  to  the  professionalization  and  innovative  force  of  industry  and  government  bodies.  This  active  contribution  has  a  visible  impact  that  underscores  the  social  engagement  of  the  Faculty  of  Technology  at  the  HvA.    

 Research  also  takes  place  in  the  classroom  setting.  In  the  Faculty  of  Technology,  research  is  carried  out  by  professors,  teachers  with  a  research   task,  doctoral  candidates,  and  students,   in  collaboration  with  and  at  the  request  of  professionals  in  the  field.      

Page 29: Citylogistics: working on livable cities

  29  

   Research  on  City  Logistics  The  City  Logistics  research  program  focuses  on  the  following  themes:      E-­mobility  and  City  Logistics  In   the   framework   of   the   showcase   project   E-­‐mobility   and   City   Logistics,  potentially   promising   sectors   are   being   identified   in   terms   of   the   electric  transport   of   both   goods   and   people.   For   city   logistics,   for   example,   the  possibilities   for   parcel   deliveries   and   the   distribution   of   goods   to   hotels,  restaurants,  and  cafés  are  being  studied.  Researchers  are  looking  into  which  type  of  charging  infrastructure  is  needed  to  facilitate  and  encourage  businesses  to  use  electric  transport,  but  also  investigating  how  best  to  achieve  that.  In  addition,  the  day-­‐to-­‐day  use  of  electric  transport  by  businesses  is  being  monitored.    E-­mobility  and  City  Logistics  research  project  The   rise   and   necessity   of   electric   transportation   is   dependent   on   numerous  factors  such  as  technical  possibilities,  acceptance,  government  policy,  costs  and  benefits,   the  environment,  business  risks,  and  data.  For  that  reason,  the  project  focuses  on  various  aspects  within  five  different  work  packages  (WPs).    WP1.  Inventory  of  transport  flows  Which  types  of  vehicles  deserve  to  have  priority  (with  an  eye  to  achieving  better  air  quality)?  And  in  which  transport  flows  are  those  vehicles  used?  Those  flows  include   the   delivery   of   supplies   to   restaurants,   cafés,   and   hotels,   parcel  deliveries,  the  collection  of  waste,  the  stocking  of  retail  stores,  and  the  provision  of  maintenance   services   and  municipal   services,   but   also   construction   logistics  flows.   It   makes   sense   to   distinguish   between   and   prioritize   the   different  transport  flows  on  the  basis  of  local  bottlenecks  within  the  city.  Result:  a  multi-­‐criteria  table  including  a  ranking  of  transport  flows.      WP2.  Feasibility  analysis  in  case  studies  What   are   the  opportunities,   obstacles,   and   conditions   for   electric   transport   for  the  important  sectors  based  on  their  supply  profile,  costs  and  benefits,  and  user  

Page 30: Citylogistics: working on livable cities

  30  

experience,  among  other   things?  Result:  detailed   insight   into   the  opportunities,  obstacles,  and  conditions  for  a  successful  transition  to  electric  transport.    WP3.  Development  of  a  charging  infrastructure  for  city  logistics    What   type   of   charging   infrastructure   will   be   necessary   in   the   Amsterdam  metropolitan  area  to  facilitate  and  encourage  the  use  of  electric  transportation?  To  what  extent  can  a  substantial  part  of  city  logistics  (electric  transportation)  be  serviced   with   a   limited   basic   infrastructure   (i.e.   hotspots)?   Where   are   those  hotspots  situated?  Which  requirements  do   the  hotspot  charging  points  need   to  meet?   Result:   maps   of   hotspots   in   Amsterdam   (based   on   various   growth  scenarios)  and  a  specification  of  requirements  for  hotspot  charging  points.    WP4.  Monitoring    A   thorough   evaluation   will   be   essential   in   order   to   be   able   to   identify   the  obstacles,  the  opportunities,  and  the  conditions  for  success  in  terms  of  the  use  of  electric   transport.   It   will   contribute   to   the   accumulation   and   transfer   of  knowledge.   What   are   the   experiences   of   companies,   drivers,   automobile  manufacturers,  and  municipalities?  How  should  we  record  and  share  the  lessons  learned?  Considering  the  growth  in  the  number  of  electric  transport  pilots  in  the  logistics   sector   (including   PostNL,   Nissan,   and   Heineken),   the   need   for  (consistent)   monitoring   for   the   sake   of   evaluation   and   the   exchange   of  knowledge   is   great.   Research   question:   How   do   you   set   up   a   consistent  monitoring   framework?   Can   we   develop   a   standard   protocol?   In   addition,   the  existing  capacity  for  monitoring  (the  use  of  charging  points)  can  be  used  to  study  and   optimize   the   charging   behavior   of   logistics   service   providers.   Result:   a  monitoring  protocol  and  multiple  evaluative  studies.      WP5.  Design  studies  How  will  the  design  of  vehicles,  charging  solutions,  and  logistics  concepts  look  in  the   future?   This   comprises   multiple   subprojects   dealing   with   subquestions  stemming   from  WP2,   WP3,   and  WP4.     Result:   the   design   and   construction   of  prototypes  in  MRA’s  own  testing  ground.          Public  procurement  Local   authorities   are   among   the   largest   employers   in   the   Netherlands.   Their  training   courses,   departments,   and   services   are   spread   across   hundreds   of  locations  throughout  their  territory.  Every  day,  those  locations  are  supplied  with  paper  for  printers,  food  and  beverages,  maintenance  products,  cleaning  supplies,  paving  stones  for  sidewalks,  and  much,  much  more  (Balm  et  al.,  2015).  And  every  day,  those  locations  also  produce  considerable  waste  flows.  This  leads  to  a  huge  number  of  small-­‐scale  deliveries   in  cities  and  many  trucks  and  delivery  vans  at  the  door.  Some  5  to  10%  of  the  deliveries  in  cities  are  thought  to  have  a  public  institution  as  their  destination.    This   research   project   analyzes   whether   or   not   that   supply   could   be   made  smarter  and  cleaner  by  consolidation  freight  flows  at  the  suppliers’  or  at  urban  distribution   centers,   by   having   them   delivered   at   night   or   by   organizing  

Page 31: Citylogistics: working on livable cities

  31  

deliveries   by   boat   via   canals.   The   focal   points   of   this   project   on   public  procurement  are  the  collaboration  with  suppliers,  the  kinds  of  information  that  are   provided   to   support   the   decision-­‐making   process,   and   the   purchasing  behavior  of  public  organizations  (Hogeschool  van  Amsterdam,  2014  and  2015c).  This   research   project   is   being   carried   out   in   collaboration   with   the   UvA/HvA  Facility  Services,  the  City  of  Rotterdam,  and  the  City  of  Amsterdam.    Construction  logistics  To   facilitate   further   research   on   smart,   zero-­‐emission   construction   logistics,   a  number  of  research  topics  have  been  formulated  (Van  Merrienboer,  2013):      

• The  development  of  calculation  models  that  contractors  and  bidders  can  use  to  compare  alternative  distribution  network  during  the  bidding  phase  and  during  the  collaboration  with  subcontractors,  suppliers,  and  logistics  service  providers.    

• The   realization   of   paperless   processes   in   the   chain   of   contractors,  subcontractors,  suppliers,  and  logistics  service  providers  (and  principals).  

• Gain-­‐sharing   and   cost-­‐sharing   models   between   contractors,  subcontractors,  and  suppliers  in  connection  with  joint  logistics  operations  such  as  logistics  hubs  and  outsourcing  to  logistics  service  providers.    

• The   linking   of   the  Building   Information  Model   (BIM)   to   the   tactical   and  operational  logistics  planning  in  the  construction  chain.    

• Using  the  most  economically  advantageous  tender  (MEAT)  procedure.    This   research   program   is   taking   place   in   collaboration  with   the  Utrecht  

University  of  Applied  Sciences,  the  UvA/HvA  Facility  Services,  TNO,  Amsterdam  Smart   City,   and   construction-­‐industry   trade   organization   Bouwend   Nederland,  among  others.  

 

   

Food  for  the  City    In   collaboration   with   the   Mainport   Logistics   research   program,   a   research  program   dealing   with   food   has   been   developed.   The   themes   covered   in   this  program   include   the   sustainable   logistics   and   processing   of   food   in   the  

Page 32: Citylogistics: working on livable cities

  32  

Amsterdam   metropolitan   area,   closing   food   systems   loops,   making   urban  farming  initiatives  more  effective,  and  doing  spatial  planning  for  urban  farming  (Van  der  Schrier  &  Levelt,  2015).  Topics  that  are  also  relevant  but  that  will  only  be  dealt  with  in  a   later  phase  include  how  the  demand  for  food  will   look  in  the  future  (considering  demographic  developments  and  consumer  trends)  and  how  food  security  can  be  guaranteed  in  the  event  of  disasters  or  other  emergencies  in  the  region.      E-­commerce  The   effects   of   web   stores   on   urban   mobility   are   currently   being   studied   in   a  collaboration  with  the  Online  Entrepreneurship  research  group  of  the  Faculty  of  Economics  and  Management  (Weltevreden  &  Rotem-­‐Mindali,  2009).    

   Dealing  with  stakeholders  When   it   comes   to   traffic   in   the   city,   everyone   is   an   expert   with   an   often  unvarnished  opinion.  When  the  plans  for  the  “shared  space”  setup  for  bicyclists  and  pedestrians  behind  Amsterdam’s  Central  Station  were  presented   in  August  2015,   for   example,  more   than   88%   of   the   local   Amsterdam   TV   channel   (AT5)  viewer   though   it   was   a   bad   idea.   Even   the   experts   were   divided   as   to   the  effectiveness  of   the  setup  and  where  best   to  apply   the  principle.  That   is  hardly  very  promising.  Amsterdam   is   getting  more   and  more   crowded.  To  maintain   a  balance  in  Amsterdam  we  will  need  to  learn  to  share  the  space  with  each  other  –  and  with  our  guests.     Since  actual  practice   involves   so  many  different  actors,   a  good   balance   must   be   found,   when   weighing   possible   solutions,   between  seemingly  conflicting  interests.      The  Multi-­‐actor,  Multi-­‐Criteria  Analysis  (MAMCA)  enables  researchers  and  policy  makers   to   evaluate   various   different   alternatives   (policy   measures,   scenarios,  technologies,  etc.)  in  relation  to  the  objectives  of  the  various  different  actors  who  are   involved   in   the   decision-­‐making   process.   In   this   way,   actors   are   explicitly  included  in  the  analysis.  As  developed  by  Macharis  (2000,  2005,  and  2007)  and  Macharis  et  al.   (2016),   the  MAMCA  method  makes  explicit   the  objectives  of   the  various  parties  involved,  which  leads  to  a  better  understanding  of  preferences  of  

Page 33: Citylogistics: working on livable cities

  33  

all   those   parties.   Involving   important   actors   in   the   analysis   will   increase   the  chances  that  the  proposed  solution  will  be  accepted  at  the  end  of  the  evaluation  process  (Van  Duin,  2012).      Since   actual   practice   involves   so   many   different   actors,   a   good  balance   must   be   found,   when   weighing   possible   solutions,  between  seemingly  conflicting  interests.    The  MAMCA  consists  of  two  phases  (Macharis,  2005).  The  first  phase  is  primarily  analytical  with  the  goal  of  gathering  any  information  that  is  needed  to  carry  out  the  analyses.  The  second  phase  is  the  synthetic  or  operational  phase  and  consists  of   the   actual   analysis.   The   result   is   an   evaluation   of   the   various   different  alternatives  on  the  basis  of  the  preferences  of  the  actors   involved.  The  analysis  provides  a  clear  sense  of  the  advantages  or  disadvantages  of  certain  measures  or  concepts   from   the   perspective   of   the   different   groups   of   actors.   This   provides  very   relevant   information   for   implementation   strategies   and   guidelines   when  dealing   with   projects   and   problems   related   to   mobility   and   transport.   The  MAMCA  method  is  now  widely  used  in  both  research  and  education.      

Page 34: Citylogistics: working on livable cities

  34  

 8.   The  future  of  sustainable  city  logistics      Clean   and   sustainable   cities   are   appealing  places   to   live,   to  work,   to   enjoy   life,  and   –   not   least   –   to   invest   in.   Sustainable   city   logistics   needs   to   contribute   to  more  livable  and  appealing  cities  with  zero-­‐emission  vehicles  that  better  match  the  size  of   the  city,  but  also  to  the  consolidation  of   freight   flows  and  the  use  of  waterways  for  the  transport  of  goods  to  and  from  the  city.      A   successful   approach   will   assume   substantial   flows   of   goods   within   cities:  construction,  hospitality,  waste,  and  parcel  deliveries  (to  consumers,  companies,  and   institutions).   In   the   future   there  will  also  be  a   sharp  rise   in   the  number  of  deliveries  made  to  seniors  at  home.      In  designing  city  logistics  solutions,  one  needs  to  have  an  overall  and  integrated  view   of   the   (different   actors’)   objectives   with   regard   to   city   logistics,   the  distribution  network,  and  the  planning  and  control  of   that  network,  but  also  of  the   processes   and   the   information   and   communications   technology   for   the  planning   and   of   who   does   what   in   the   organization.   Local   and   supralocal  government  policy  is  another  key  factor  in  city  logistics.      Many  initiatives  for  city  logistics  start  out  with  government  subsidies.  However,  such  initiatives  often  end  as  soon  as  the  government  money  has  been  exhausted.  An   integrated   approach   to   city   logistics   means   that   the   business   model   also  needs  to  be  carefully  thought  out.  There  is  no  future  for  solutions  based  entirely  on  subsidies.    Cleaner  city   logistics   is  about   transport   that   is  not  only  zero  emission,  but  also  quieter  and  safer.  It  could  involve  electric  cars  and  cargo  tricycles,  for  example;  50%   of   the   local-­‐for-­‐local   shipments   can   be   done   with   cargo   tricycles  (Cyclelogistics,   2014).   Logistics   service   providers   are   placing   their   bets   on  bicycle   couriers.  Those  won’t   be   cyclists   carrying  bags  on   their  back,   however,  but  rather  electric  cargo  tricycles  with  considerable  load  capacity.  Some  1,000  to  2,000  of   those   couriers  will   soon  be   riding   around   in  Amsterdam  and   you   can  count  on  this  development  generating  as  much  of  a  discussion  as  the  current  one  about  whether  or  not  motor  scooters  should  still  be  allowed  to  use  bicycle  lanes.      Distribution   by   water   is   also   a   cleaner   form   of   city   logistics.   PostNL   is   busy  developing   floating   depots   that   can   enter   Amsterdam   by   water,   enabling  deliveries  by  cargo  tricycle  or  small  electric  vehicles  to  customers  in  the  city.  Van  Keulen,  an  innovative  construction  materials  wholesaler  in  Amsterdam,  wants  to  team  up  with  Mokum  Mariteam  and  Blom  Dekschuitenverhuur   (a  barge   rental  company)  to  supply  construction  sites  from  the  water.    More   than   anything,   sustainable   city   logistics   is   connected:   the   vehicles   are  connected  via  the  Internet  of  Things.  There  is  currently  a  lot  of  experimentation  going  on  with  dynamic   traffic  management   systems.  The  metropolitan  areas  of  

Page 35: Citylogistics: working on livable cities

  35  

Amsterdam,  Assen,  and  Helmond-­‐Eindhoven  are  leading  the  way  in  that  regard.  With   “connected   navigation”,   trucks   and   delivery   vans   are   provided  with   real-­‐time  information  about  traffic  congestion  and  green  waves  to  entice  them  to  opt  for   particular   routes   that   will   result   in   fewer   emissions   and   less   nuisance   for  residents.  Traditional   loading  and  unloading  bays   in  a  street,  often  occupied  by  vehicles  that  don’t  belong  there,  can  be  replaced  by  virtual  loading  and  unloading  bays  along  the  side  of  the  street.  Those  would  only  become  actual  bays  if  vehicles  that  are  logged  in  to  the  traffic  management  systems  request  them.  That  would  prevent   loading  and  unloading  from  taking  place  in  the  street  and  stopping  the  flow  of  traffic.      And  while   there   is   certainly   room   for   debate   about   the   rise   of   companies   like  Uber,  one  thing  that  sort  of  company  is  very  good  at  is  using  data  and  intelligent  algorithms  to  determine  where  the  hotspots  in  a  city  are  and  where  to  position  cars   or   have   them   drive   to   limit   the   amount   of   empty   mileage   as   much   as  possible.   This   ensures  more   efficient   deliveries   and   less  mileage.   A   lot   can   be  learned  from  such  companies  when  it  comes  to  sustainable  city  logistics.    New  city   logistics  concepts  need  to  be  developed  that  will  make  customers  feel  they   are   getting   better   service.   Companies   are   actively   working   on   that.     In  addition,   the   technology   involved   in   both   vehicles   and   traffic   management  systems  needs  to  be  developed  further.    There,  too,  hopeful  developments  can  be  seen.   And,   finally,   these   concepts   and   techniques   also   need   to   be   able   to   be  applied.  There  needs  to  be  room  for   that,  and  –  most  of  all  –   there  needs  to  be  consistent  government  policy.      Market   parties  make   investments   in   this   kind   of   innovation   for   a   period   of   at  least   ten   years.   Policy   changes   along  with   the   changing  of   the   guard,   and   even  then,   a   city   alderman  might   dilute   ambitions   under   pressure   from   city   council  members   or   complaining   neighbors.   Or   ambitious   policy   may   get   throttled   as  plans  become  more  concrete.  In  Amsterdam,  for  example,  a  policy  plan  aimed  at  getting   25%  of   the   freight   transports   to   take   place   by   boats   on   canals   became  impossible   to   implement   as   a   result   of   the   Bestemmingsplan  Water   (the   city’s  zoning   plan   for  water),  which   precluded   any   expansion   of   transport   by  water.  And   in  a  number  of  cities,  proposed   low-­‐emission  zones  were  ultimately  either  postponed  or  never  even  designated  as  such.      

Page 36: Citylogistics: working on livable cities

  36  

   In  the  end,  the  key  to  future-­‐oriented  city  logistics  lies  in  enticing,  encouraging,  and  sometimes  even  pushing  the  market  and  in  responding  with  an  open  mind  to  whatever  innovations  may  emerge  from  the  market.  And  that  particular  key  is  in  the  hands  of  the  government.    Since  in  practice  many  different  actors  are  involved,  it  is  necessary  to  find  a  good  balance   between   seemingly   conflicting   interests   when   weighing   possible  solutions.   Businesses   are   more   than   eager   to   work   on   improving   urban  distribution.  A   timely  and  unimpeded   transport  of  goods   to  and   from  cities   for  stores,  hotels,   restaurants,  and  cafés,  construction  sites,  and  residents  will  only  be   possible   as   the   result   of   a   joint   effort   by   the   business   community   and  government  bodies.  Companies  with  a  lot  of  activities  in  city  centers  should  meet  more  often  with   the  municipalities   so   that  knowledge  about   just-­‐in-­‐time  urban  distribution  can  be  included  in  policymaking  and  spatial  planning,  in  the  creation  of   low-­‐emission   zones,   in   the   formulation   of   new   traffic   regulations,   or   when  measures  are  taken  to  reduce  emissions  of  particulate  matter.  

Page 37: Citylogistics: working on livable cities

  37  

Literature      Aken,   L.   van,   Chambre,   P.E.   de   la,   &   Nederkoorn   J.B.M.   (1993).   Stadsdistributiecentra  

hebben  een  logistieke  en  een  maatschappelijke  betekenis,  Bedrijfskunde,  65(1).  Deventer:  Kluwer  Bedrijfswetenschappen.  

ALICE/ERTRAC   (2015),   Urban   freight   research   roadmap,   ALICE/ERTRAC   Urban  Mobility  WG.    

Allen,   J.,   Browne,   M.,   Woodburn,   A.,   &   Leonardi,   J.   (2012).   The   role   of   urban  consolidation  centres  in  sustainable  freight  transport.  Transport  Reviews,  32(4).  

Anand,  N.,  Quak,  H.,  Duin,  R.  van,  &  Tavasszy,  L.  (2012).  City   logistics  modeling  efforts:  Trends  and  gaps  –  A  review.  Procedia  –  Social  and  Behavioral  Sciences,  39.  

Ballot,  E.,  Montreuil,  B.,  &  Meller,  R.D.  (2014).  The  Physical  Internet:  The  Network  of  the  Logistics  Networks.  Paris:  La  Documentation  Française.  

Balm,   S.,   Browne,   M.,   Leonardi,   J.,   &   Quak,   H.   (2014).   Developing   an   evaluation  framework   for   innovative   urban   and   interurban   freight   transport   solutions.  Procedia  –  Social  and  Behavioral  Sciences,  125.  

Balm,   S.,   Ploos   van   Amstel,   W.,   Habers,   J.,   Aditjandra,   P.,   &   Zunder   T.H.   (2015).   The  purchasing   behaviour   of   public   organizations   and   its   impact   on   city   logistics.  Proceedings  International  Conference  on  City  Logistics  2015.    

Barnes,   L.,   &   Lea-­‐Greenwood,   G.   (2010).   Fast   fashion   in   the   retail   store   environment.  International  Journal  of  Retail  &  Distribution  Management,  38(10).  

Binsbergen,  A.J.  van,  &  Visser,   J.G.S.N.  (2001).   Innovation  steps  towards  efficient  goods  distribution  systems  for  urban  areas.  Delft:  Delft  University  of  Technology.  

Blanco,  E.E.,  &  Fransoo,  J.C.  (2013).  Reaching  50  million  nanostores:  retail  distribution  in  emerging  megacities.  Beta  Working  Paper  series  404.  

Brookings   (2015).   New   e-­‐commerce   entry   Jet  means   rock-­‐bottom   prices  …   and  more  city  trucks,  http://www.brookings.edu/blogs/the-­‐avenue/posts/2015/07/28-­‐e-­‐commerce-­‐jet-­‐city-­‐trucks-­‐tomer.  

Brucker,   K.   de,   Macharis,   C.,   &   Verbeke,   A.   (2013).   Multi-­‐criteria   analysis   and   the  resolution   of   sustainable   development   dilemmas:   A   stakeholder   management  approach.  European  Journal  of  Operational  Research  224  (1)  2013.      

Coopers  &   Lybrand   (1991).   Plaatsen   van   distributiecentra:   definitiestudie   en   bijlagen.  Rotterdam:  Ministerie  van  Verkeer  en  Waterstaat.  

Coopers   &   Lybrand   (1991).   Plaatsen   van   distributiecentra:   naar   een   bereikbare   en  leefbare   binnenstad   van   Maastricht   –   plan   van   aanpak.   Rotterdam:   Ministerie  van  Verkeer  en  Waterstaat.  

Cyclelogistics   (2014).   Cyclelogistics  moving   Europe   forwards:   Potential   to   shift   goods  transport  from  cars  to  bicycles  in  European  cities.  Cyclelogistics.eu.  

Dablanc,  L.  (2011).  City  distribution,  a  key  element  of  the  urban  economy:  guidelines  for  practitioners.   City   Distribution   and   Urban   Freight   Transport:   Multiple  Perspectives.  

Dablanc,   L.   (2014).   Logistics   sprawl   and   urban   freight   planning   issues   in   a   major  gateway   city.   Sustainable   Urban   Logistics:   Concepts,  Methods   and   Information  Systems  (pp.  49–69).  Berlin,  Heidelberg:  Springer.  

Duin,   J.H.R.   van   (2012).   Logistics   concept   development   in   multi-­‐actor   environments.  Delft:  Delft  University  of  Technology.  

Duin,   J.H.R.  van,  Goffau,  W.  de,  Wiegmans,  B.,  &  Tavasszy,  L.A.  (2015).  Improving  home  delivery  efficiency  by  using  principles  of  address  intelligence  for  b2c  deliveries.  Proceedings  International  Conference  on  City  Logistics  2015.    

Eckerdal,  K.   (2012).   ‘Everybody   is   in   Services’:   The   Impact   of   Servicification  on  Trade  and  Trade  Policy.  Presentation  OECD  Global  Forum  on  Trade,  8  November  2012.    

EIM  (1989).  Detailhandel  en  logistiek.  Zoetermeer:  EIM.  

Page 38: Citylogistics: working on livable cities

  38  

EIM  (1990).  Detailhandelstrends  en  hun  logistieke  gevolgen.  Zoetermeer:  EIM.  European   Commission   (2011).   White   Paper   on   Transport.   Brussels:   European  

Commission.  EY  (2015).  The  green  mile?  EY  Netherlands.  Forrester  (2015).  US  B2B  eCommerce  Forecast:  2015  to  2020.  Forrester  research  report.  Gemeente   Amsterdam   (2015a),   Agenda   Duurzaamheid.   Gemeente   Amsterdam.   March  

2015.  Gemeente   Amsterdam   (2015b).   Uitvoeringsagenda   Mobiliteit.   Gemeente   Amsterdam.  

April  2015.  Gemeente  Amsterdam  (2015c).  Stad  in  Balans.  Gemeente  Amsterdam,  May  2015.  Gemeente   Amsterdam   (2015d).   https://www.amsterdam.nl/gemeente/volg-­‐

beleid/innovatie/programma/smart-­‐mobility/.  Goor,   A.R.,   Ploos   van   Amstel,   M.,   &   Ploos   van   Amstel,   W.   (2014).   Fysieke   distributie:  

denken  in  toegevoegde  waarde.  Noordhoff.  Groen  Links  Amsterdam  (2011).  Ruimte  durven  delen.  Groen  Links  Amsterdam.  Groothedde,  B.,  &  Rustenburg,  M.  (2003).  De  economische  haalbaarheid  van  de  stadbox  

in  stedelijke  distributie.  TNO  INRO.  Guis,   E.   (2104).   Marktanalyse   ontkoppelpunten,   in   opdracht   van   Ministerie   van  

Infrastructuur  en  Milieu.  Hemel,   Z.   (2015).   Pleidooi   voor   flinke   groei  Amsterdam.   Interview   in  Trouw,   June  17,  

2015.  Hogeschool  van  Amsterdam  (2014).  Leveranciersonderzoek  Universiteit  en  Hogeschool  

van  Amsterdam,  adviesrapport  voor  UvA/HvA  Facility  Services.  Hogeschool   van   Amsterdam   (2015a).   Verkeersobservaties   Ferdinand   Bolstraat,  

adviesrapport  voor  Gemeente  Amsterdam.  Hogeschool   van   Amsterdam   (2015b).   Senioren   thuis   (report   by   students   of   the   City  

Logistics  minor  program),  June  2015.  Hogeschool   van   Amsterdam   (2015c).   Leveranciersonderzoek   Gemeente   Amsterdam,  

adviesrapport  voor  Gemeente  Amsterdam.  Hogeschool  van  Amsterdam  (2015d).  Evaluatie  e-­‐NV200  ‘Power  to  Amsterdam’  project,  

adviesrapport  voor  Gemeente  Amsterdam  en  Nissan  Nederland.  Hogeschool   van   Amsterdam   (2015e).   Ontwikkelingen   op   de   Nederlandse   EV-­‐markt,  

adviesrapport  voor  RVO.  Hogeschool   van   Amsterdam   (2015f).   Adviesrapport   Haarlemmerbuurt,   adviesrapport  

voor  Ondernemersvereniging  Haarlemmerdijk  en  -­‐straat.  Hoofdbedrijfschap   Detailhandel   (1992).   Bevoorrading   van   de   detailhandel   in  

binnensteden:   een   studie   naar   de   haalbaarheid   en   effecten   van  stadsdistributiecentra.  The  Hague:  HBD/IMK.  

Janssen,   G.R.   (2014).   Transportstromen   verschuiven   door   toepassing   3-­‐D,   TNO  Publicatie  2014.  

Macharis,   C.   (2000).   Strategic   modeling   for   intermodal   terminals:   Socio-­‐economic  evaluation  of  the  location  of  barge/road  terminals  in  Flanders.  (Doctoral  thesis).  Brussels:  Vrije  Universiteit  Brussel.  

Macharis,   C.   (2005).   The   importance   of   stakeholder   analysis   in   freight   transport.  Quarterly  Journal  of  Transport  Law,  Economics  and  Engineering,  8.    

Macharis,  C.  (2007).  Multi-­‐criteria  Analysis  as  a  Tool  to  Include  Stakeholders  in  Project  Evaluation:   The   MAMCA   Method,   in   Haezendonck,   E.   (Ed.),   Transport   Project  Evaluation.   Extending   the   Social   Cost–Benefit   Approach.   Cheltenham:   Edward  Elgar.  

Macharis,  C.,  Kin,  B.,  Balm,  S.,  &  Ploos  van  Amstel,  W.  (2016).  Multi-­‐actor  Participatory  Decision-­‐making   in   Urban   Construction   Logistics.   In   Transportation   Research  Board  95th  Annual  Meeting  (No.  16-­‐2337).  

Page 39: Citylogistics: working on livable cities

  39  

Macharis,   C.,   &   Bernardini,   A.   (2015).   Reviewing   the   use   of   Multi-­‐Criteria   Decision  Analysis   for   the   evaluation   of   transport   projects:   Time   for   a   multi-­‐actor  approach.  Transport  Policy,  37.  

Macharis,   C.,   Witte,   A.   De,   &   Ampe   J.   (2009).   The   multi-­‐actor,   multi-­‐criteria   analysis  methodology   (MAMCA)   for   the   evaluation   of   transport   projects:   theory   and  practice.  Journal  of  Advanced  Transportation,  43(2).  

MDS   Transmodal   (2012).   DG   MOVE   European   Commission:   Study   on   Urban   Freight  Transport,  European  Union.    

Merrienboer,  S.  van  (2013).  Best  Practices  in  Bouwlogistiek.  Delft:  TNO.  Nesterova,  N.,  Quak,  H.,  Balm,  S.,  Roche-­‐Cerasi,   I.,  &  Tretvik,  T.  (2013).  Project  FREVUE  

deliverable  D1.  3:  State  of  the  art  of  the  electric  freight  vehicles  implementation  in   city   logistics.   TNO   and   SINTEF.   European   Commission   Seventh   Framework  Programme.   http://frevue.eu/wp-­‐content/uploads/2014/05/FREVUE-­‐D1-­‐3-­‐State-­‐of-­‐the-­‐art-­‐city-­‐logistics-­‐and-­‐EV-­‐final-­‐.pdf  Last  accessed,  May  19,  2014.  

NOS  (2015).  Bouwmarkten  rukken  op  naar  stadscentra,  http://nos.nl/artikel/2034720-­‐bouwmarkten-­‐rukken-­‐op-­‐naar-­‐stadscentra.html.  

OECD  (2015).  Recent  Energy  Trends  in  OECD,  OECD/International  Energy  Agency.  Osterwalder,   A.,   &   Pigneur,   Y.   (2010).   Business   Model   Generation:   A   Handbook   for  

Visionaries,  Game  Changers,  and  Challengers.  Hoboken,  New  Jersey:   John  Wiley  &  Sons,  Inc.  

Pauli,  G.  (2014).  De  blauwe  economie.  Amsterdam:  Nieuw  Amsterdam.  PBL  (2015).  De  stad  verbeeld,  PlanBureau  voor  de  Leefomgeving.  Pelletier,   S.,   Jabali,   O.,   &   Laporte,   G.   (2014).   Goods   distribution  with   electric   vehicles:  

Review   and   research   perspectives.   Technical   Report   CIRRELT-­‐2014-­‐44.  Montréal,  Canada:  CIRRELT.  

Ploos  van  Amstel,  W.  (2013).  Integrale  visie  op  transport  en  logistiek  in  2040,  Preadvies  voor  de  Raden  voor  de  Leefomgeving  en  Infrastructuur.  

Ploos  van  Amstel,  W.,  Balm,  S.  &  van  Merriënboer,  S.  (2015),  A  framework  for  tendering  based   on   EMAT   approach   to   support   sustainable   urban   construction   logistics,  URBE  2015  October  2015    

Quak,  H.   (2008).  Sustainability  of  urban   freight   transport:  Retail  distribution  and   local  regulations   in   cities   (No.   EPS-­‐2008-­‐124-­‐LIS).   Erasmus   Research   Institute   of  Management  (ERIM).  

Quak,   H.J.   (2012).   Improving   urban   freight   transport   sustainability   by   carriers:   Best  practices  from  the  Netherlands  and  the  EU  project  CityLog.  Procedia  –  Social  and  Behavioral  Sciences.  

Quak,  H.J.  (2014).  Access  Restrictions  and  Local  Authorities’  City  Logistics  Regulation  in  Urban  Areas.  City  Logistics:  Mapping  The  Future,  177.  

Quak,   H.,   Balm,   S.,   &   Posthumus,   B.   (2014).   Evaluation   of   city   logistics   solutions  with  business  model  analysis.  Procedia  –  Social  and  Behavioral  Sciences,  125.  

Quak,  H.J.,  Klerks,  S.A.W.,  Aa,  S.,  Ree,  D.A.  de,  Ploos  van  Amstel,  W.,  &  Merrienboer,  S.A.  (2011).   Bouwlogistieke   oplossingen   voor   binnenstedelijk   bouwen   (No.   TNO-­‐060-­‐DTM-­‐2011-­‐02965).  TNO.  

Quak,  H.,   &  Nesterova,  N.   (2014).   Towards   Zero   Emission  Urban   Logistics:   Challenges  and   Issues   for   Implementation   of   Electric   Freight   Vehicles   in   City   Logistics.  Sustainable   Logistics   (Transport   and   Sustainability,   Volume   6)   Emerald   Group  Publishing  Limited,  6,  265–294.  

RESIDE   (2015).   A   baseline   scenario   for   energy   efficiency   renovations   in   Europe’s  residential  buildings,  RESIDE  Project  EU.  

Schrier,  A.  van  der,  &  Levelt,  M.  (2015).  Logistics  drivers  and  barriers  in  urban  farming  projects:  an  international  comparison  of  cases.  Paper  to  be  presented  at  the  7th  International   AESOP   Sustainable   Food   Planning   Conference:   Localizing   Urban  Food  Strategies,  in  Torino,  October  2015.  

Shopping2020  (2014).  Shopping  tomorrow.  Shopping2020/Thuiswinkelorganisatie.  

Page 40: Citylogistics: working on livable cities

  40  

SMARTSET   (2016),   Experiences   of   a   European   project   for   cleaner,   safer   and   more  efficient  freight  transport,  Smartset  Project  publication  Soto,   J.,   et   al.   (2015).   How   many   urban   recycling   centers   do   we   need   and   where?   A  

continuum   approximation   approach.   Proceedings   International   Conference   on  City  Logistics  2015.    

Stanisław,   I.,   Kijewska,   K.,   &   Kijewski,   D.   (2014).   Possibilities   of   Applying   Electrically  Powered  Vehicles  in  Urban  Freight  Transport.  Procedia  –  Social  and  Behavioral  Sciences,  151.    

Taniguchi,   E.,   &   Thompson,   R.G.   (Eds.)   (2014).   City   logistics:  Mapping   the   future.   CRC  Press.  

Taniguchi,  E.,  Thompson,  R.G.,  &  Yamada,  T.  (2015).  New  Opportunities  and  Challenges  for  City  Logistics.  Proceedings  International  Conference  on  City  Logistics  2015.  

Topsector   Logistiek   (2015).   Meerjarenprogramma   Topsector   Logistiek   2016–2020,  Topsector  Logistiek.  

Transforum  (2015).  Urban  mobility  roadmap,  Transforum  Turblog   (2011).   Transferability   of   urban   logistics   concepts   and   practices   from   a  

worldwide  perspective.  Deliverable  2:  Business  Concepts  and  models  for  urban  logistics.  

Vahrenkamp,   R.,   &   Berlin,   L.C.   (2013).   25   Years   City   Logistic:   Why   failed   the   urban  consolidation  centres?  (sic)  

Visser,   J.,   Nemoto,   T.,   &   Browne,  M.   (2014).  Home   delivery   and   the   impacts   on   urban  freight  transport:  A  review.  Procedia  –  Social  and  Behavioral  Sciences,  125,  15–27.  

Vlaamse   Ministerie   van   Mobiliteit   en   Openbare   Werken   (2013).   Wegwijzer   voor   een  efficiënte  en  duurzame  stedelijke  distributie   in  Vlaanderen.  Vlaamse  Ministerie  van  Mobiliteit  en  Openbare  Werken.  

Weltevreden,   J.W.,   &   Rotem-­‐Mindali,   O.   (2009).   Mobility   effects   of   b2c   and   c2c   e-­‐commerce   in   the  Netherlands:   a   quantitative   assessment.   Journal   of   Transport  Geography,  17(2),  83–92.    

Page 41: Citylogistics: working on livable cities

  41  

 About  the  author      Dr.  Walther  Ploos  van  Amstel  (born  in  1962)  is  the  professor  of  city  logistics  at  the  Amsterdam  University  of  Applied  Sciences  (HvA).  From  2002  through  2009  he  was  a  professor  of   logistics  at   the  Netherlands  Defence  Academy  (NLDA)   in  Breda  and  Den  Helder.      For  over  25  years  he  as  been  active  as  a  management  consultant   in  the  field  of  logistics,   supply   chain   management   and   international   distribution.   He   is  primarily   concerned   with   logistics   process   innovations,   the   introduction   of  supply   chain   concepts   into   practice,   intermodal   distribution   networks,  cooperation  within   logistics   chains   and   networks,   service   logistics,   sustainable  logistics,  chain  management,  intelligent  logistics  concepts  and  risk  management  in   logistics   chains.   He   completed   his   doctoral   research   on   the   performance   of  logistics  managers  at  Vrije  Universiteit  Amsterdam  in  2002.      Among  the  other  honorary  positions  he  holds,  he  was  chairman  of  the  jury  of  the  Dutch   Logistics   Award   of   the   Logistics   Management   Association   (VLM),   a  member  of  the  jury  of  the  Thuiswinkel  Awards,  a  member  of  the  expert  group  of  the  Council  for  the  Environment  and  Infrastructure  (RLI)  and  a  specialist  partner  at  the  Inventory  Management  Competence  Centre  (IMCC).  He  also  serves  on  the  board  of  a  number  of  logistics  service  providers.    

   Walther  Ploos  van  Amstel  is  a  regular  columnist  for  Logistiek.nl,  Delaatstemeter  and  Twinklemagazine,  among  other  media.  You  might  run  into  Walther  working  as  a  house  music  DJ  in  his  rare  moments  of  free  time.