127
CCS/CCUS Overview: What It Is and What Are Its Implications? AIChE Carbon Management Conference, Alexandria, VA 20 October 2013

AlChE-Global-CCS_Institute-Presentation-101813

Embed Size (px)

DESCRIPTION

The Global CCS Institute presented a workshop at the American Institute of Chemical Engineers (AIChE) ‘Carbon Management Technology Conference’ in Alexandria, Virginia on 20 October 2013.

Citation preview

Page 1: AlChE-Global-CCS_Institute-Presentation-101813

CCS/CCUS Overview: What It Is and What Are Its Implications? AIChE Carbon Management Conference, Alexandria, VA 20 October 2013

Page 2: AlChE-Global-CCS_Institute-Presentation-101813

Agenda

1:00 Welcome and Introductions 1:15 The Role of CCS/CCUS 1:45 Capturing CO2 From Power Generation and Industrial

Processes 2:15 Transport/Storage/Utilization of CO2 3:00 Legal/Regulatory Framework 3:30 Panel Discussion: Proactively Addressing the

Management of CO2 4:00 Summary and Wrap-up 4:30 Networking Reception

Page 3: AlChE-Global-CCS_Institute-Presentation-101813

Introducing the Global CCS Institute

3  

The Global CCS Institute accelerates carbon capture and storage, a vital technology to tackle climate change and provide energy security. We advocate for CCS as a crucial component in a portfolio of technologies required to reduce greenhouse gas emissions.

  We drive the adoption of CCS as quickly and cost effectively as possible by sharing expertise, building capacity and providing advice and support to overcome challenges.

  Our diverse international Membership comprises governments, global corporations, small companies, research bodies and non-government organisations committed to CCS as an integral part of a low–carbon future.

 

Page 4: AlChE-Global-CCS_Institute-Presentation-101813

Globally  connected  membership  

INSTITUTE MEMBERSHIP NUMBERS AND LOCATIONS  TOTAL 378

80   136  82  

3  

5  74  

Page 5: AlChE-Global-CCS_Institute-Presentation-101813

Networking  capability      Expert  support  to  Members  /  Projects  

Comprehensive  resources       Best  pracHce  guidelines  and  toolkits  

The Global CCS Institute – what we do

Page 6: AlChE-Global-CCS_Institute-Presentation-101813

The Global Status of CCS: 2013

6  

Key Institute publication

  2013 edition: released 10 October

  Comprehensive coverage on the state of CCS projects and technologies

  Project progress outlined since 2010

  Includes recommendations for moving forward

Page 7: AlChE-Global-CCS_Institute-Presentation-101813

7

CCS/CCUS  OVERVIEW:      The  Role  of  CCS/CCUS  

Prepared By: Steven M. Carpenter, Vice, President

ADVANCED RESOURCES INTERNATIONAL, INC. Arlington, VA

20 October 2013

CCS/CCUS  Overview:    What  Is  It  &  What    Are  Its  ImplicaHons?  

Page 8: AlChE-Global-CCS_Institute-Presentation-101813

8

30,000 ft view – why are we here?

CCS vs. CCUS

Major Project portfolio

Standardization is key

Presentation Topics

Page 9: AlChE-Global-CCS_Institute-Presentation-101813

9

Background  –  Why  are  we  here?  

Page 10: AlChE-Global-CCS_Institute-Presentation-101813

10

Energy is Good: 25/90% Population NORTH KOREA •  20% access to electricity •  Population is 3” shorter & 7 lbs. lighter •  Infant Mortality Rate in 12 x higher •  156th in GDP/Capita

SOUTH KOREA •  90% access to electricity •  Population is 3” taller & 7 lbs. heavier •  Infant Mortality Rate 12 x lower •  32nd in GDP/capita

Page 11: AlChE-Global-CCS_Institute-Presentation-101813

11

What is CCS?

Page 12: AlChE-Global-CCS_Institute-Presentation-101813

12

What is CCS?

Page 13: AlChE-Global-CCS_Institute-Presentation-101813

13

What is CCS?

Page 14: AlChE-Global-CCS_Institute-Presentation-101813

14

What is CCS?

Page 15: AlChE-Global-CCS_Institute-Presentation-101813

15

Setting the expectations… •  December  17,  1903  •  20  feet  in  alFtude  •  120  feet  in  distance  •  12  seconds  in  duraFon  

Page 16: AlChE-Global-CCS_Institute-Presentation-101813

16

David Black’s Flyover

Page 17: AlChE-Global-CCS_Institute-Presentation-101813

17

In just 17 short years…

•  2003:    DOE  Carbon  SequestraFon  Partnerships    

•  2010:    White  House  Interagency  JTF  on  CCS  

•  2016:    5-­‐10  full  scale  demonstraFons  

•  2020:    Widespread  commercial  deployment  

Page 18: AlChE-Global-CCS_Institute-Presentation-101813

18

In 17 years we go from…

Page 19: AlChE-Global-CCS_Institute-Presentation-101813

19

…to this…

Page 20: AlChE-Global-CCS_Institute-Presentation-101813

20

CCS  vs.  CCUS  –  What  is  CO2-­‐EOR  &  why  is  it  important?  

Page 21: AlChE-Global-CCS_Institute-Presentation-101813

21

What is CCS?

Page 22: AlChE-Global-CCS_Institute-Presentation-101813

22

What is CCS?

Page 23: AlChE-Global-CCS_Institute-Presentation-101813

23

CO2 Injection

CO2 Source Oil to

Market Production Well

CO2 Recycled

Current Water Oil Contact

Original Water

Oil Contact

Stage #1

Stage #2

Stage #3 TZ/ROZ

Unswept Area

Oil Bank

Swept Area

Integrating CO2-EOR and CO2 Storage Could Increase Storage Potential

Saline Reservoir

Page 24: AlChE-Global-CCS_Institute-Presentation-101813

24

LaBarge  Gas  Plant  

Val  Verde  Gas  Plants  

Enid  FerFlizer  Plant  

Jackson  Dome  

McElmo  Dome  Sheep  Mountain  Bravo  Dome  

13  

5  

17  70  

6  

Dakota  Coal  GasificaFon  

Plant  

Antrim  Gas  Plant  

2  1  

3  

  120 CO2-EOR projects provide 352,000 bbl/day

  New CO2 pipelines are expanding CO2-EOR to new oil fields and basins.

  320 mile Green Pipeline

  226 mile Encore Pipeline

2  

Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources.

Number  of  CO2-­‐EOR  Projects  

Natural  CO2  Source  

Industrial  CO2  Source  

ExisHng  CO2  Pipeline  

CO2  Pipeline  Under  Development  

120  

Encore  Pipeline  

Denbury/Green  Pipeline  

U.S.  CO2-­‐EOR  AcFvity  –  Oil  Fields  &  CO2  Sources  

Lost  Cabin  Gas  Plant  

1  

Page 25: AlChE-Global-CCS_Institute-Presentation-101813

25

Significant Volumes of CO2 Are Already Being Injected for EOR in the U.S.

* Source: Advanced Resources International, 2012 **MMcfd of CO2 can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 * 103 (Mcf per metric ton)

Location of EOR / Storage CO2 Source Type and Location

CO2 Supply (MMcfd)

Geologic Anthropogenic Texas, New Mexico, Oklahoma, Utah

Geologic (Colorado, New Mexico) Gas Processing, Fertilizer Plant (Texas) 1,600 190

Colorado, Wyoming Gas Processing (Wyoming) - 300

Mississippi Geologic (Mississippi) 930 - Michigan Gas Processing (Michigan) - 10

Oklahoma Fertilizer Plant (Oklahoma) - 35 Saskatchewan Coal Gasification (North Dakota) - 150 TOTAL (MMcfd) 2,530 685 TOTAL (MMt per year) 49 13

Page 26: AlChE-Global-CCS_Institute-Presentation-101813

26

Oil  Recovery  &  CO2  Storage  From    "Next  GeneraFon"  CO2-­‐EOR  Technology*    

Reservoir Setting Oil Recovery*** (Billion Barrels)

CO2 Demand/Storage*** (Billion Metric Tons)

Technical Economic** Technical Economic** L-48 Onshore 104 60 32 17

L-48 Offshore/Alaska 15 7 6 3

Near-Miscible CO2-EOR 1 * 1 *

ROZ (below fields)**** 16 13 7 5

Sub-Total 136 80 46 25

Additional From ROZ “Fairways” 40 20 16 8

*The values for economically recoverable oil and economic CO2 demand (storage) represent an update to the numbers in the NETL/ARI report “Improving Domestic Energy Security and Lowering CO2 Emissions with “Next Generation” CO2-Enhanced Oil Recovery (CO2-EOR) (June 1, 2011). **At $85 per barrel oil price and $40 per metric ton CO2 market price with ROR of 20% (before tax). ***Includes 2.6 billion barrels already being produced or being developed with miscible CO2-EOR and 2,300 million metric tons of CO2 from natural sources and gas processing plants. **** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

26

Page 27: AlChE-Global-CCS_Institute-Presentation-101813

27

Num

ber o

f 1 G

W S

ize C

oal-F

ired

Powe

r Plan

ts*

0  

200  

300  

100  

240  

133  

Technical Demand/ Storage Capacity

Economic Demand/ Storage Capacity**

*Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operations per 1 GW of generating capacity. **At an oil price of $85/B, a CO2 market price of $40/mt and a 20% ROR, before. Source: Advanced Resources Int’l (2011).

Total CO2 Anthropogenic CO2 Total CO2 Anthropogenic CO2

228  

121  

Reservoir Setting

Number of 1GW Size Coal-Fired

Power Plants***

Technical Economic*

L-48 Onshore 170 90

L-48 Offshore/Alaska 31 14

Near-Miscible CO2-EOR 5 1

ROZ** 34 28

Sub-Total 240 133

Additional From ROZ “Fairways” 86 43

*At $85 per barrel oil price and $40 per metric ton CO2 market price with ROR of 20% (before tax). ** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary. ***Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operation per 1 GW of generating capacity; the U.S. currently has approximately 309 GW of coal-fired power plant capacity.

Demand  for  CO2:    Number  of  1  GW  Size  Coal-­‐Fired  Power  Plants  

Page 28: AlChE-Global-CCS_Institute-Presentation-101813

28

Linking  CO2  Supplies  with  CO2-­‐EOR  Demand  

Sources: EIA Annual Energy Outlook 2011 for CO2 emissions; NETL/Advanced Resources Int’l (2011) CO2 demand.

The  primary  EOR  markets  for  excess  CO2  supplies  from  the  Ohio  Valley,  South  AtlanFc  and  Mid-­‐ConFnent  is  East/West  Texas  and  Oklahoma.  

4.2  0.3  

Pacific  

0  

0.2  

0.2  

7.4  

14.2  4.3  

2.0  

6.3  3.7  

3.7  

0.2  2.3  

13 Bcfd

19 Bcfd

0.2  

3.6  

8.0  

-­‐  

0.6  4.2  

4.2  

0.3  8 Bcfd

Region

Captured CO2

Supplies*

CO2

Demand

Excess CO2

Supply

Net CO2

Demand(BMt) (BMt) (BMt) (BMt)

New England 0.2 - 0.2

Middle Atlantic 2.3 0.2 2.1

South Atlantic 7.4 0.2 7.2

East North Central 4.2 0.6 3.6

West North Central 6.3 2.0 4.3

East South Central 3.6 0.2 3.3

West South Central 4.3 14.2 9.9

Mountain 3.7 3.7

Pacific 0.3 4.2 3.8

Total 32.2 25.3 20.8 13.7

ROZ "Fairways" 8.0 8.0JAF2012_035.XLS

Captured CO2 Supplies and CO2 Demand

* Capture from 200 GW of coal-fired power plants, 90% capture rate.

CO2 Demand by EOR (Bmt) Captured CO2 Emissions (Bmt)

Jackson Dome

Page 29: AlChE-Global-CCS_Institute-Presentation-101813

29

CO2-EOR Global Potential

Region Name Basin Count

Asia Pacific 8 Central and South America 7 Europe 2 Former Soviet Union 6 Middle East and North Africa 11 North America/Other 3 North America/United States 14 South Asia 1 S. Africa/Antarctica 2 Total 54

EIA  assessment  of  54  large  world  oil  basins  for  CO2-­‐based  Enhanced  Oil  Recovery  •  High  level,  1st  order  assessment  of  CO2-­‐EOR  and  

associated  storage  potenFal,  using  U.S.  experience  as  analog.  

•  Tested  basin-­‐level  esFmates  with  detailed  modeling  of  47  large  oil  fields  in  6  basins.  

Page 30: AlChE-Global-CCS_Institute-Presentation-101813

30

CO2-EOR Global Potential

Page 31: AlChE-Global-CCS_Institute-Presentation-101813

31

CCUS Dependency & Challenges

•  Growth  in  producFon  from  CO2-­‐EOR  is  limited  by  the  availability  of  reliable,  affordable  CO2.  

•  If  increased  volumes  of  CO2  do  not  result  from  CCUS,  then  these    benefits  from  CO2-­‐EOR  will  not  be  realized.  

•  Therefore,  not  only  does  CCUS  need  CO2-­‐EOR  to  ensure  viability  of  CCUS,  but  CO2-­‐EOR  needs  CCUS  to  ensure  adequate  CO2  to  facilitate  CO2-­‐EOR  growth.  

•  This  will  become  even  more  apparent  as  potenFal  even  more  new  targets  for  CO2-­‐EOR  become  recognized  &  internaFonal  desire  for  CO2-­‐EOR  grows.  

Page 32: AlChE-Global-CCS_Institute-Presentation-101813

32

Major  CCS  Project  Poriolio  

Page 33: AlChE-Global-CCS_Institute-Presentation-101813

33

Major CCS Demonstration Projects CCPI  ICCS  Area  1      FutureGen  2.0  

Southern Company  Kemper County IGCC Project

Novel  Transport  Gasifier    w/Carbon  Capture  DOE  Share:    $270M    

EOR  –  ~3.0  M  TPY  2014  start  

NRG W.A. Parish Generating Station

Post  CombusHon  CO2  Capture  DOE  Share:  $167M    

EOR  –    ~1.4M  TPY  2016  start  

Summit TX Clean Energy  Commercial  Demo  of  Advanced  IGCC  w/  Full  Carbon  Capture  

DOE  Share:  $450M  EOR  –  ~2.2  TPY  2017  start  

HECA  Commercial  Demo  of  Advanced  IGCC  w/  Full  Carbon  Capture  

DOE  Share:    $408M    EOR  –    ~2.6M  TPY  2019  start  

Leucadia Energy CO2  Capture  from  Methanol  Plant  

DOE  Share:    $261M    EOR  –  ~4.5  M  TPY  2017  start  

Air Products and Chemicals, Inc. CO2  Capture  from  Steam  Methane  Reformers  

DOE  Share:    $284M    EOR  –    ~0.93M  TPY  2012  start  

FutureGen 2.0  Large-­‐scale  TesHng  of  Oxy-­‐CombusHon    

DOE  Share:  Plant  -­‐    $1.04B    SALINE  –  1M  TPY  2017  start  

Archer Daniels Midland CO2  Capture  from  Ethanol  Plant  

DOE  Share:    $141M    SALINE  –  ~0.9M  TPY  2014  start  

Page 34: AlChE-Global-CCS_Institute-Presentation-101813

34

RCSP Phase III: Development Projects

8  

7  

1  

2  

6  

5  

 9  

Partnership Geologic Province Target Injection Volume (tonnes)

Big Sky Nugget Sandstone 1,000,000

MGSC Illinois Basin- Mt. Simon Sandstone 1,000,000

MRCSP Michigan Basin- Niagaran Reef 1,000,000

PCOR

Powder River Basin- Bell Creek Field 1,500,000

Horn River Basin- Carbonates 2,000,000

SECARB

Gulf Coast – Cranfield Field- Tuscaloosa

Formation 3,400,000

Gulf Coast – Paluxy Formation 250,000    

SWP Regional CCUS Opportunity 1,000,000

WESTCARB Regional Characterization

InjecFon  Ongoing  

2013  InjecFon  Scheduled  

InjecFon  Scheduled  2013-­‐2015  

 

1  

2  

7  

8  

6  

9  

5  

  Large-­‐volume  tests    Four  Partnerships  currently  injec9ng  CO2      Remaining  injec9ons  scheduled  2013-­‐2015  

InjecFon  began  Nov  2011  

InjecFon  Started  April  2009  

Core  Sampling  Taken  

InjecFon  began  August  2012  

InjecFon  started  in  depleted  reef    February  2013  

InjecFon  Started  June  2013  

Seismic  Survey    

Completed  

3  

3  

4  

4  

Page 35: AlChE-Global-CCS_Institute-Presentation-101813

35

Global Portfolio

Page 36: AlChE-Global-CCS_Institute-Presentation-101813

36

Global Portfolio - LSIP GCCSI identified 65 Large Scale Integrated Projects

3 new LSIPs in Brazil, China, and Saudi Arabia

13 LSIPs removed/cancelled since 2012

4 LSIPs have commenced operation since 2012, for a total of 12 LSI-CCS projects in operation

Reduction in # LSIPs reduces CO2 captured/stored from 148 million tonnes per annum (Mtpa) to 122

Page 37: AlChE-Global-CCS_Institute-Presentation-101813

37

Importance of CCUS (CO2-EOR)

•  Accounts for 78% of DOE Demonstration Projects (7 of 9)

•  Accounts for 52% of LSIPs at various stages of the asset life cycle (34 of 65)   63% of operating phase projects (5 of 8)

  75% of execution phase projects (3 of 4)

Projects underway or planned in North America, South America, Europe, Asia, and Australia

SecFon  7.2:    

CO2–EOR  DOMINATES  GEOLOGIC  STORAGE  

“It  is  es9mated  that  during  the  past  40  years  nearly  1  Gt  of  CO2  has  been  injected  into  geological  reservoirs  as  part  of  CO2–EOR  ac9vi9es.”  

Page 38: AlChE-Global-CCS_Institute-Presentation-101813

38

StandardizaFon  

Page 39: AlChE-Global-CCS_Institute-Presentation-101813

39

EPA’s Regulatory “Train Wreck”

Source:  Edison  Electric  InsFtute;  Dick  Winschel,  CONSOL  Energy  

Page 40: AlChE-Global-CCS_Institute-Presentation-101813

40

CCS Regulatory “Train Wreck”

Page 41: AlChE-Global-CCS_Institute-Presentation-101813

41

TC-265 Working Groups

TC-­‐265  

Capture   Transport   Storage   QuanFficaFon  &  VerificaFon   Crossculng   CO2-­‐EOR  

Twined  Secretariat  

Page 42: AlChE-Global-CCS_Institute-Presentation-101813

42

Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420 Fax: (703) 528-0439 Houston, TX 11931 Wickchester Ln., Suite 200 Houston, TX 77043 Phone: (281) 558-9200 Fax: (281) 558-9202 Knoxville, TN 603 W. Main Street, Suite 906 Knoxville, TN 37902 Phone: (865) 541-4690 Fax: (865) 541-4688 Cincinnati, OH 1282 Secretariat Court Batavia, OH 45103 Phone: (513) 460-0360 Email: [email protected]

http://adv-res.com/

Thank you

Page 43: AlChE-Global-CCS_Institute-Presentation-101813

Capturing CO2 From Power Generation and Industrial Processes Kevin C O’Brien, PhD Principal Manager Carbon Capture – the Americas

Page 44: AlChE-Global-CCS_Institute-Presentation-101813

Defining Carbon Capture

The Cost Driving Step in CCS / CCUS

Page 45: AlChE-Global-CCS_Institute-Presentation-101813

Post Combustion Capture

Challenges   Most technologies need significant scaling to be relevant to power

generation   Loss of power around 30%   Needs cleaning of flue gases (SOx and NOx)   Integration may reduce flexibility of power plant   Increase in water around 35%   Significant space requirements could be a challenge at well established

sites   Amine emissions

Page 46: AlChE-Global-CCS_Institute-Presentation-101813

Pre-Combustion Capture

Challenges:   Energy penalty still significant at around 20%   Commercial scale hydrogen turbine still to be demonstrated   Additional purification may be required in the event of venting   Gasification plants are unfamiliar to the power sector

Page 47: AlChE-Global-CCS_Institute-Presentation-101813

Oxy-Combustion (Oxyfuel)

Challenges:   Requires an integrated plant   Development will require a whole of plant approach   Air separation unit requires around 25% of electricity produced   Start up using air may require additional gas treating equipment   Increased water consumption

Page 48: AlChE-Global-CCS_Institute-Presentation-101813

Large Scale Capture LSIP = Large Scale Integrated Project 800,000 tpa for coal-based power gen 400,000 tpa for emission-intensive industrial facilities (including natural gas-based power generation)

Page 49: AlChE-Global-CCS_Institute-Presentation-101813

Large scale integrated CCS projects (LSIPs)

Page 50: AlChE-Global-CCS_Institute-Presentation-101813

Wide variety of capture options being planned

Projects by capture type and industry

0 5 10 15 20 25 30 35 40 45 Number of projects

Pre-combustion (gasification) Pre-combustion (natural gas processing) Post-combustion Oxy-fuel combustion Industrial separation Various/Not decided

Power generation

Industrial applications

Page 51: AlChE-Global-CCS_Institute-Presentation-101813

Significant amounts of CO2 are already being captured and stored

0 10 20 30 40 50 60

Other industries

Natural gas processing

Power generation

Mass of CO2 (Mtpa)

Identify Evaluate Define Execute Operate

CO2 captured by industry and project development stage

Page 52: AlChE-Global-CCS_Institute-Presentation-101813

Regional variations exist in preferred capture technology

0 5 10 15 20 25

Africa

South America

Other Asia

Middle East

Australia

Canada

China

Europe

United States

Number of projects

Pre-combustion (gasification) Pre-combustion (natural gas processing)

Post-combustion Oxy-fuel combustion

Industrial separation Various/Not decided

Projects by location and capture type

Page 53: AlChE-Global-CCS_Institute-Presentation-101813

Challenges for large-scale carbon capture

•  Demonstrating capture at larger scale in more industries •  Reducing costs, including through the development of new

technologies

•  More effective knowledge sharing

•  Integration of capture into large-scale power and industrial applications

•  Flexible operation of power stations with CCS

Page 54: AlChE-Global-CCS_Institute-Presentation-101813

Capture R&D

Provides Promise of Driving Down Capture Costs

Page 55: AlChE-Global-CCS_Institute-Presentation-101813

Solvent Based Process

•  Absorption based process •  Dissolve CO2 into solvent, i.e. aqueous amine •  Solvent regeneration by heating

Page 56: AlChE-Global-CCS_Institute-Presentation-101813

Sorbent Based Process

•  Physi or Chemi sorption based process •  Packed or Fluidized Beds •  Lower pressure or increase temperature to regenerate

Page 57: AlChE-Global-CCS_Institute-Presentation-101813

Membrane Based Process

•  Typically thin dense layer on porous substrate •  Permeation of CO2 through dense layer due to solution / diffusion

through membrane •  N2 and other components rejected (retentate) and emitted up the

stack

Page 58: AlChE-Global-CCS_Institute-Presentation-101813

Relative Maturity of Capture Technologies

DOE/NETL’s  Exis-ng  Plants  R&D  Program  –Carbon  Dioxide,  Water,  &  Mercury,  June  2010  

Page 59: AlChE-Global-CCS_Institute-Presentation-101813

Final observations

•  Carbon capture is an established commercial process in natural gas and chemical production.

•  Carbon capture is being demonstrated in power generation.

•  Primary challenges for capture are related to process economics – parasitic power and capital costs

•  There are many options for capture approaches and processes – there is no “holy grail”

•  Continued R&D in capture is vital to reduce overall costs of CCS / CCUS

Page 60: AlChE-Global-CCS_Institute-Presentation-101813
Page 61: AlChE-Global-CCS_Institute-Presentation-101813

Southeast Regional Carbon Sequestration Partnership CCS/CCUS Demonstration Projects

Presented to:

The Global CCS Institute’s CCS/CCUS Overview Workshop

Alexandria, VA October 20, 2013

Presented by: Gerald R. Hill, Ph.D.

Senior Technical Advisor Southern States Energy Board

Page 62: AlChE-Global-CCS_Institute-Presentation-101813

Acknowledgements

  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.

  Cost share and research support provided by SECARB/SSEB Carbon Management Partners.

  Anthropogenic Test CO2 Capture Unit funded separately by Southern Company and partners.

62

Page 63: AlChE-Global-CCS_Institute-Presentation-101813

Presentation Outline

  SECARB Early Test, Cranfield, Mississippi

–  Project Overview –  Lessons Learned: Large Scale

Injection at CO2-EOR Site –  Commercial Significance of CCUS

  SECARB Anthropogenic Test, Citronelle, Alabama

–  Project Overview –  Lessons Learned: Capture,

Transportation & Injection Integration

–  Innovative monitoring techniques

63

Page 64: AlChE-Global-CCS_Institute-Presentation-101813

SECARB’s Early Test Cranfield, Mississippi

64

Page 65: AlChE-Global-CCS_Institute-Presentation-101813

SECARB Early Test Monitoring Large Volume Injection at Cranfield

Natchez Mississippi

Mississippi River

3,000 m depth Gas cap, oil ring, downdip water leg Shut in since 1965 Strong water drive Returned to near initial pressure

Illustration by Tip Meckel 65

Page 66: AlChE-Global-CCS_Institute-Presentation-101813

Cranfield Early Test Monitoring: Detailed Area of Study

66

Page 67: AlChE-Global-CCS_Institute-Presentation-101813

67

4,146,143

8,073,395

3,927,251

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

Jul-­‐0

8Sep-­‐08

Nov-­‐08

Jan-­‐09

Mar-­‐09

May-­‐09

Jul-­‐0

9Sep-­‐09

Nov-­‐09

Jan-­‐10

Mar-­‐10

May-­‐10

Jul-­‐1

0Sep-­‐10

Nov-­‐10

Jan-­‐11

Mar-­‐11

May-­‐11

Jul-­‐1

1Sep-­‐11

Nov-­‐11

Jan-­‐12

Mar-­‐12

May-­‐12

Jul-­‐1

2Sep-­‐12

Nov-­‐12

Jan-­‐13

Mar-­‐13

May-­‐13

Jul-­‐1

3

CO2

(Metric

 Tons)

Time

Cumulative  CO2 InjectedJuly,  2013

CumulativeTotal

Cumulative  VolumeInjected  West

Cumulative  VolumeInjected  East

SECARB Early Test: Cumulative CO2 Injected, July 2013

Page 68: AlChE-Global-CCS_Institute-Presentation-101813

68

4,377,834

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

Jul-­‐0

8Sep-­‐08

Nov-­‐08

Jan-­‐09

Mar-­‐09

May-­‐09

Jul-­‐0

9Sep-­‐09

Nov-­‐09

Jan-­‐10

Mar-­‐10

May-­‐10

Jul-­‐1

0Sep-­‐10

Nov-­‐10

Jan-­‐11

Mar-­‐11

May-­‐11

Jul-­‐1

1Sep-­‐11

Nov-­‐11

Jan-­‐12

Mar-­‐12

May-­‐12

Jul-­‐1

2Sep-­‐12

Nov-­‐12

Jan-­‐13

Mar-­‐13

May-­‐13

Jul-­‐1

3

CO2

(Metric

 Tons)

Time

Cranfield  Net  CO2 StoredJuly,  2013

 CO2  Stored

SECARB Early Test: Cranfield Net CO2 Stored, July 2013

Page 69: AlChE-Global-CCS_Institute-Presentation-101813

August 6, 2012 JAF2012_081.PPT

Midwest/Ohio Valley Regional Attributes and CO2 Utilization Opportunities

69

LaBarge Gas Plant

Val Verde Gas Plants

Enid  FerFlizer  Plant  

Jackson Dome

McElmo Dome Sheep Mountain

Bravo Dome

13  

3  

17  70  

6  

Dakota Coal Gasification

Plant

Antrim Gas Plant

2  1  

4  

  Currently, 119 CO2-EOR projects provide 352,000 B/D.

  New CO2 pipelines - - the 320 mile Green Pipeline and the 226 mile Encore Pipeline - - are expanding CO2-EOR to new oil fields and basins.

  The single largest constraint to increased use of CO2-EOR is the lack of available, affordable CO2 supplies.

2  

Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources.

Number  of  CO2-­‐EOR  Projects  

Natural  CO2  Source  

Industrial  CO2  Source  

ExisFng  CO2  Pipeline  

CO2  Pipeline  Under  Development  

119  

Encore Pipeline

Denbury/Green Pipeline

U.S. CO2-EOR Activity

Lost  Cabin  Gas  Plant  

1  

Page 70: AlChE-Global-CCS_Institute-Presentation-101813

http://www.netl.doe.gov/energy-analyses/pubs/NextGen_CO2_EOR_06142011.pdf

Financial & Production Benefits from “Next Generation” CO2-EOR

Page 71: AlChE-Global-CCS_Institute-Presentation-101813

xx

NETL Next Generation CO2 Oil Recovery

71

0

5

10

15

20

25

Bill

ion

Tons

of C

O2

CO2 Requirements

Natural Anthropogenic 0

10

20

30

40

50

60

70

80

CO

2 O

il R

ecov

ery

Bill

ion

BB

L

CO2 Oil Recovery

Billion Barrels Oil

Context - Total Proven US Oil Reserves @ 2010 = 30.9 Billion BBL BP Annual Statistical Review - 2011

Page 72: AlChE-Global-CCS_Institute-Presentation-101813

SECARB’s Anthropogenic Test Citronelle, Alabama

72

Page 73: AlChE-Global-CCS_Institute-Presentation-101813

SECARB Phase III Anthropogenic Test   Carbon capture from Plant Barry

equivalent to 25MW.   12 mile CO2 pipeline constructed

by Denbury Resources.   CO2 injection into ~9.400 ft. deep

saline formation (Paluxy)   Over 90,000 metric tons

injected (October 2013)   Monitoring CO2 during injection

and 3 years post-injection.

73

Page 74: AlChE-Global-CCS_Institute-Presentation-101813

CO2 absorption

Solv

ent

Reg

ener

atio

n

Compression Solvent

Management

Gas

Con

ditio

ning

Plant Barry Capture Unit: 25MW, 500 TPD

74

Page 75: AlChE-Global-CCS_Institute-Presentation-101813

Start with a Good Storage Site

75

•  Proven four-way closure at Citronelle Dome

•  Injection site located within Citronelle oilfield where existing well logs are available

•  Deep injection interval (Paluxy Form. at 9,400 feet)

•  Numerous confining units

•  Base of USDWs ~1,400 feet

•  Existing wells cemented through primary confining unit

•  No evidence of faulting or fracturing (2D)

Page 76: AlChE-Global-CCS_Institute-Presentation-101813

SECARB Citronelle: MVA Sample Locations

76

• One (1) Injector (D-9-7 #2)

• Two (2) deep Observation wells (D-9-8 #2 & D-9-9 #2)

• Two (2) in-zone Monitoring wells (D-4-13 & D-4-14)

• One (1) PNC logging well (D-9-11)

• Twelve (12) soil flux monitoring stations

Page 77: AlChE-Global-CCS_Institute-Presentation-101813

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

77

Page 78: AlChE-Global-CCS_Institute-Presentation-101813

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

78

Page 79: AlChE-Global-CCS_Institute-Presentation-101813

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

79

Page 80: AlChE-Global-CCS_Institute-Presentation-101813

SECARB Citronelle: MVA & Closure

80

Baseline 1 year

Injection 2 years

Post 3 years

APR 2011 to AUG 2012 SEPT 2012 to SEPT 2014 OCT 2014 to SEPT 2017

  Shallow MVA –  Groundwater sampling (USDW Monitoring) –  Soil Flux –  PFT Surveys

  Deep MVA –  Reservoir Fluid sampling –  Crosswell Seismic –  Mechanical Integrity Test (MIT) –  CO2 Volume, Pressure, and Composition analysis –  Injection, Temperature, and Spinner logs –  Pulse Neutron Capture logs –  Vertical Seismic Profile

  MVA Experimental tools   Closure – plug & abandon wells

Page 81: AlChE-Global-CCS_Institute-Presentation-101813

Future Plans

Citronelle UIC Permit Requirement: “… the permittee shall demonstrate to the Department, using monitoring and modeling data and other information that the CO2 is safely confined within the injection zone and that USDWs are not endangered by the CO2 plume.” Citronelle Monitoring Question: What active or passive tests can we perform during site closure that will help demonstrate to regulators that the CO2 is trapped (or the plume is slowing) and no longer an endangerment to USDWs?

81

Page 82: AlChE-Global-CCS_Institute-Presentation-101813

CO2  Storage  in  UnconvenHonal  Gas  FormaHons  with  Enhanced  Gas  

Recovery  PotenHal  

Nino  Ripepi,  Assistant  Professor,  Department  of  Mining  &  Minerals  Engineering  Virginia  Center  for  Coal  and  Energy  Research  

Virginia  Tech      

CMTC CCS Session October 20, 2013, Alexandria, VA

Page 83: AlChE-Global-CCS_Institute-Presentation-101813

CO2  Storage  and  Enhanced  Coalbed  Methane  Recovery  (ECBM)  

•  Shallow  reservoir  with  low  P  &  T  can  result  in  lower  compression  costs  

•  Gas  is  stored  in  coal  securely  by  adsorpFon  rather  than  by  free  storage  or  soluFon  

•  Unmineable  Coal  Seams:  200  Billion  Tons  of  Capacity  in  the  U.S.  –  25  years  of  current  GHG  emissions  (DOE)  

•  ECBM  potenFal  ~  150  Tcf  (Reeves,  2002)  •  Central  App:    >  than  6,000  CBM  wells  

Page 84: AlChE-Global-CCS_Institute-Presentation-101813

CBM  and  ECBM  Mechanisms  Coalbed  Methane  ProducFon  

(CBM)  Enhanced  Coalbed  Methane  

ProducFon  (ECBM)  

(i)  Dewatering:  pressure  ,  effecFve  stress  ,  fracture  apertures    permeability    

(ii)  CH4  releasematrix  shrinkage  and  zero  volume  change  condiFon,  fracture  apertures    ,  permeability    

•  Net  Permeability:      CompeFng  effects  (i)-­‐(ii)    

(i)  CO2  greater  affinity  to  coal  than  CH4    

(ii)  Depending  on  coal  rank  coal  matrix  can  adsorb  twice  to  as  hish  as  ten  Fmes  more  CO2    as  CH4    

(iii)  When  CO2  is  adsorbed  matrix  swells;  under  zero  volume  change  condiFon,  fracture  apertures    ,  permeability    

CO2

CH4

Gas  C

ontent  

PL Pressure  

Under  saturated  

VL

VL/2 Dewatering  

Page 85: AlChE-Global-CCS_Institute-Presentation-101813

Virginia  Tech  InjecFon  Tests    (Funded  by  NETL/DOE,  Managed  or  in  

Partnership  with  SECARB/SSEB)  •  Performed  Pilot  CO2  InjecFon  Field  Tests  in  Virginia  (1,000  tons)  and,  under  the  direcFon  of  the  GSA,  in  Alabama  (300  tons)  (Phase  II,  2005–2010)  

•  In  Progress,  a  Small-­‐Scale  InjecFon  Test  in  Central  Appalachia  (20,000  tons)  into  UnconvenHonal  Storage  Reservoirs  with    Emphasis  on  Enhanced  Coalbed  Methane  Recovery  (2011–2015)  

Page 86: AlChE-Global-CCS_Institute-Presentation-101813

3rd HydraulicFracture Zone

4th HydraulicFracture Zone

2nd HydraulicFracture Zone

1st HydraulicFracture Zone

InjectionWell Monitoring

Well

MonitoringWell

!

Russell  County  -­‐  Coal  Seams  Stage 4

Greasy Creek 1 Seaboard 2

Lower Seabord 1&2 Lower Seaboard 3

Upper Horsepen 2&3 Stage 3

Middle Horsepen 1 Middle Horsepen 2

Pocahontas 11 Pocahontas 10

Lower Horsepen 1 Lower Horsepen 2

Stage 2 Pocahontas 9

Pocahontas 8-1 Pocahontas 8-2

Pocahontas 7-1A Pocahontas 7-1B Pocahontas 7-2 Pocahontas 7-3

Stage 1 Pocahontas 6 Pocahontas 5

Pocahontas 4-1 Pocahontas 4-2 Pocahontas 3-1 Pocahontas 3-4

9.6 m (3 ft)

9.8 m (3 ft)

9.3 m (2.8 ft)

7.6 m (2.3 ft)

RU-84 BD114

Page 87: AlChE-Global-CCS_Institute-Presentation-101813

CO2  InjecHon  

Page 88: AlChE-Global-CCS_Institute-Presentation-101813

CO2  InjecFon  

0

100

200

300

400

500

600

700

800

900

1000

01/09

/09 11

01/12

/09 11

01/15

/09 10

01/18

/09 10

01/21

/09 10

01/24

/09 10

01/27

/09 10

01/30

/09 10

02/02

/09 10

02/05

/09 10

02/08

/09 10

Inje

ctio

n Pr

essu

re (p

sia)

Tem

pera

ture

(Deg

rees

F)

0

10

20

30

40

50

60

70

80

90

100

CO

2 In

ject

ion

Rat

e (to

ns/d

ay)

Injection Well (psia)CO2 Process Temperature (F)CO2 Injection Rate (tons/day)

Page 89: AlChE-Global-CCS_Institute-Presentation-101813
Page 90: AlChE-Global-CCS_Institute-Presentation-101813

January  21,  2009  -­‐  500  ml  of  the  PTMCH  tracer  

Tracer  Injec-on  

Miskovic,  2011  

Page 91: AlChE-Global-CCS_Institute-Presentation-101813

Russell  County  Flowback  

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

100  

0  

20  

40  

60  

80  

100  

120  

140  

05/20/09  

06/19/09  

07/20/09  

08/19/09  

09/19/09  

10/19/09  

11/19/09  

12/19/09  

01/19/10  

02/18/10  

03/21/10  

04/20/10  

05/21/10  

06/20/10  

07/21/10  

08/20/10  

09/20/10  

10/20/10  

11/20/10  

12/20/10  

01/20/11  

02/19/11  

03/22/11  

Gas  C

ompo

siHo

n  (%

)  

Gas  P

rodu

cHon

 (Mcf/day)  

BD-­‐114  Flowback   Carbon  Dioxide   Methane   Nitrogen  

Page 92: AlChE-Global-CCS_Institute-Presentation-101813

Shut-in Period with CO2 Injection mid November ‘08 – mid May ‘09

Pre CO2 Injection EUR = 319 MMcf

Post CO2 Injection EUR = 534 MMcf

CO2  InjecFon  Decline-­‐Curve  Analysis  Phase  II  InjecFon  Well  RU-­‐84  (BD-­‐114)  

Gas

Pro

duct

ion,

M

cf/m

onth

Page 93: AlChE-Global-CCS_Institute-Presentation-101813

Conclusions  from  Russell  County  InjecHon  Test  

•  1,007  tons  of  CO2  injected  into  19  coal  seams  in  2009  •  InjecFon  rate  higher  than  anFcipated  at  an  average  of  

over  40  tons  per  day,  but  decrease  at  the  end  to  an  injecFon  rate  of  <20  tons  per  day  

•  ECBM  measured  in  2  wells  (Unsustainable  due  to  small  CO2  volume)  

•  Tracer  detecFon  at  off-­‐set  wells,  but  no  measured    CO2  breakthrough  

•  Flowback  –  ProducFon  returned  to  beser  than  pre-­‐injecFon  rates  –  Flowback  showed  N2,  CH4  then  CO2  desorpFon  

Page 94: AlChE-Global-CCS_Institute-Presentation-101813

Current  Small-­‐Scale  InjecHon  Test  in  Central  Appalachia    

 Objectives:   Inject 20,000 metric tons of CO2 into 3 CBM

wells over a one-year period in Buchanan County, VA

  Perform a small 300-1,000 ton Huff and Puff test in a horizontal shale gas well in Morgan County, TN

 Duration:   4 years, October 1, 2011–September 30, 2015

 Funding:   Total Project Value: $14,374,090   DOE/Non-DOE: $11,499,265 / $2,874,825

Page 95: AlChE-Global-CCS_Institute-Presentation-101813

Scheduled October 2013

Field demonstration in Buchanan County, VA  

Page 96: AlChE-Global-CCS_Institute-Presentation-101813

CO2  Plume  by  Layer  

Page 97: AlChE-Global-CCS_Institute-Presentation-101813

MVA program for Buchanan County test Repeated from Russell County test:

•  Atmospheric monitoring with IRGAs to measure CO2 concentration •  Surface methods including soil CO2 flux, surface water sampling and shallow

tracer detection •  Offset well testing for gas composition (CO2 concentration, tracers, ECBM)

New components:

•  Multiple tracer injection

•  3 monitoring wells by zone

•  Surface deformation measurement

•  Tomographic fracture imaging •  Passive measurement of

seismic energy emissions (similar to microseismic monitoring)

.

Page 98: AlChE-Global-CCS_Institute-Presentation-101813

Three monitoring wells •  Location factors:

• Access • Predicted plume growth • Specific tests • Future use

•  Formation logging:

• Reservoir saturation • Sonic • Others TBD

•  Gas content:

• CO2 • Methane • Tracers

•  Core collection

Page 99: AlChE-Global-CCS_Institute-Presentation-101813

Chattanooga Shale Study Area

Page 100: AlChE-Global-CCS_Institute-Presentation-101813

Shale Test– Injection and ���

Off-set Monitoring Well

Locations  

Page 101: AlChE-Global-CCS_Institute-Presentation-101813

InjecFon  Well  –  4  Stage  

Page 102: AlChE-Global-CCS_Institute-Presentation-101813

UFlizing  Lab  Results  to  Update  Models    

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400Pressure (psia)

Ads

orbe

d G

as (s

cf/to

n, D

MM

F)

P3 (CH4) P3 (CO2) P7 (CH4) P7 (CO2) P11 (CH4) P11 (CO2)

350 psi

Page 103: AlChE-Global-CCS_Institute-Presentation-101813

THANK  YOU  

Acknowledgments  Financial  assistance  for  this  work  was  provided  by  the  U.S.  Department  of  Energy  through  the  NaFonal  Energy  Technology  Laboratory's  Program  under  Contract  No.  DE-­‐FE0006827.  

http://www.energy.vt.edu

Page 104: AlChE-Global-CCS_Institute-Presentation-101813

Pamela Tomski, Senior Advisor Policy & Regulatory - The Americas AiChE Workshop 20 October 2013

CCS Regulatory Frameworks

Page 105: AlChE-Global-CCS_Institute-Presentation-101813

Outline

•  Key Principles of a CCS Regulatory Regime •  Storage Site Permitting •  GHG Accounting and Reporting •  Long-term Liability and Stewardship •  New Source Performance Standards •  Standards and Regulations (Steve Carpenter, ARI)

Page 106: AlChE-Global-CCS_Institute-Presentation-101813

Key Principles of CCS Regulatory Regime

•  Comprehensiveness •  Safety and environmental integrity •  Public outreach and consultation •  Socio-economic policies •  Streamline regulation and coordination among regulatory

agencies •  Flexibility to address site-specific conditions •  Efficient use of resources and protection of property rights Geologic storage integrity and environmental and public safety are essential

Page 107: AlChE-Global-CCS_Institute-Presentation-101813

Regulations must be comprehensive & flexible

Pore space access and use

Comprehensive and flexible

Page 108: AlChE-Global-CCS_Institute-Presentation-101813

Public outreach and consultation is key

•  Know your audience – social site characterization to design outreach for local conditions

•  Have a two-way conversation – address needs and concerns of target audience and developer

•  Effective engagement with consistent messages is essential and can make or break a project

Page 109: AlChE-Global-CCS_Institute-Presentation-101813

U.S. Storage Site Permitting

Jurisdiction •  U.S. EPA, Office of Water &

Underground Injection Control (UIC) Program

•  Administered by Regional EPA office (federal) unless state applies for primacy

Types of Permits (CO2 Injection Wells) •  Class VI: Geologic Sequestration •  Class II: Oil & Gas / Enhanced

Oil Recovery •  Class V: Other / Experimental

Page 110: AlChE-Global-CCS_Institute-Presentation-101813

Class II & Class VI

Page 111: AlChE-Global-CCS_Institute-Presentation-101813

§144.19 Transitioning from Class II to VI The Director will determine when there is an increased risk to USDWs. The Director will consider the following:

•  Increase in reservoir pressure within the injection zone(s) •  Increase in carbon dioxide injection rates •  Decrease in reservoir production rates •  Distance between the injection zone(s) and USDWs •  Suitability of the Class II area of review delineation •  Quality of abandoned well plugs within the area of review •  The owner’s or operator’s plan for recovery of carbon

dioxide at the cessation of injection •  The source and properties of injected carbon dioxide •  Any additional site specific factors as determined by the

Director Ref: Ground Water Protection Council‐UIC Conference, Sarasota, Florida: “The EPA Class VI GS Rule: Regulation and Implementation.” http://www.gwpc.org/sites/default/files/event‐sessions/Kobelski_Bruce.pdf

Page 112: AlChE-Global-CCS_Institute-Presentation-101813

UIC Class VI guidance documents

13 Planned, 7 Available •  Well Testing & Monitoring •  Primacy Application &

Implementation •  Site Characterization •  Area of Review Evaluation &

Corrective Action •  Well Construction •  Financial Responsibility •  Public Participation Considerations

for GS Wells Facts

http://water.epa.gov/type/groundwater/uic/class6/gsguidedoc.cfm

Page 113: AlChE-Global-CCS_Institute-Presentation-101813

Storage projects with R&D exemptions

SECARB - Class V sought for the following reasons: •  Short duration of injection (3 years) and modest CO2 volumes •  Characterization and modeling of “stacked” CO2 storage •  CO2 injection under “real world” operating conditions •  Demonstration of experimental monitoring tools and methods

Page 114: AlChE-Global-CCS_Institute-Presentation-101813

Status of Class VI applications & primacy

Page 115: AlChE-Global-CCS_Institute-Presentation-101813

GHG Accounting & Reporting

Subpart RR - Geologic Sequestration •  All Class VI wells or wells that inject

CO2 for long-term containment •  CO2 source, mass of CO2 transferred

onsite and mass injected •  Fugitive, vented, leaked emissions;

annual & cumulative CO2 mass stored Subpart UU – Other, CO2 EOR •  CO2 source, mass transferred onsite

and mass injected Subpart PP - CO2 Suppliers •  CO2 captured, extracted, exported

EPA Subpart RR: http://www.epa.gov/ghgreporting/reporters/subpart/rr.html

Mandatory Greenhouse Gas Reporting Rule (2009) Amendments (2010) (FR V. 75 No. 230, December 1, 2010 at 75065)

Page 116: AlChE-Global-CCS_Institute-Presentation-101813

US EPA, 2013 and Bruce Hill, Clean Air Task Force

GHG Accounting & Reporting

Page 117: AlChE-Global-CCS_Institute-Presentation-101813

MRV Plan (Required for RR)

•  Identify active and maximum monitoring areas

•  Identify potential CO2 surface leakage pathways

•  Surface CO2 leak detection and quantification strategy

•  Strategy for baseline measurements (pre-injection)

•  Site-specific variables for mass balance (reporting framework)

•  Site closure and post-injection monitoring

Reporter Submits MRV Plan

EPA Reviews MRV Plan

EPA Technical Review (Iterative)

EPA Decision

Reporter Implements MRV Plan Revise plan based on site

performance as necessary

Page 118: AlChE-Global-CCS_Institute-Presentation-101813

Integrating RR and Class VI

•  No threshold for reporting – Class VI “all in” for RR •  RR and Class VI are not fully integrated; however, they

complement each other •  The purpose of RR is to document CO2 storage

permanence through MRV; Class VI ensure protection of USDWs

•  The MRV plan may describe relevant elements of the UIC permit (e.g. leakage pathway assessment) and how those elements satisfy RR

•  All facilities that conduct GS (RR) are required to submit annual reports (narrative of monitoring effort) to EPA

•  To date, no facilities have reported under RR

Page 119: AlChE-Global-CCS_Institute-Presentation-101813

Long-term Liability

•  No federal authority to establish funding or accept responsibility; new legislation would be required

•  Proposed bills have not passed (H. 2454 / S. 1733) – establish task force to provide recommendations to Congress on financial mechanisms for long-term liability

Page 120: AlChE-Global-CCS_Institute-Presentation-101813

Long-term Liability

•  Six states have addressed long-term liability; approaches to financing long-term stewardship varies

•  No funding mechanism (WA, UT, OK, WV) •  Stewardship fund; state assumes limited long-term liabilities

(KS, LA, TX, WY) •  Stewardship fund; state assumes all L-T liabilities (ND, MT)

CCSReg Project

Page 121: AlChE-Global-CCS_Institute-Presentation-101813

GHG Limits for New Power Plants - NSPS

•  Authority under Section 111 of Federal Clean Air Act •  Re-proposed CO2-NSPS (September 20, 2013) –under

60 day comment period •  New coal or petcoke “Electric Utility Steam Generation

Units” (EGUs) and IGCCs limited to 1,000 lbs of CO2/MWh (gross) on 12 month rolling average

•  Compliance is stack-based emissions (CO2 storage not part of the calculation) and EPA’s proposal does not involve downstream regulation

•  EGU operators must send captured CO2 to storage site that complies with Subpart RR

http://www2.epa.gov/carbon-pollution-standards/2013-proposed-carbon-pollution-standard-new-power-plants

Page 122: AlChE-Global-CCS_Institute-Presentation-101813

NSPS - primary technology issues

“The term ‘standard of performance’ means a standard for emissions of air pollutants which reflects the degree of emission limitation achievable through the application of the best system of emission reduction which (taking into account the cost of achieving such reduction and any nonair quality health and environmental impact and energy requirements) the Administrator determines has been adequately demonstrated.”

•  BSER for coal is “partial CCS” – cites Kemper IGCC, Boundary Dam, TCEP and HECA

•  Bases BSER on: feasibility, costs, size of emission reduction, “promoting further development of technology” (p. 172-174)

•  Storage viability based on general geology knowledge and NETL field tests (p. 221-224)

•  Locations remote from EOR or existing pipelines are “not expected to have new coal-fired builds without CCS in any event…” (p. 253)

Page 123: AlChE-Global-CCS_Institute-Presentation-101813

Standards and Regulations

•  Standards can be used to support / simplify the process of technical regulations development and application

•  World’s first formally recognized CCS standard –Z-742-12 Geological Storage of Carbon Dioxide

•  International Standards Organization – 31000, 17024, 14064, 14065

  International Performance Assessment Centre for Geologic Storage of CO2 – Seed document

  Canadian Standards Association - ISO Secretariat, standards developer

  Bi-national agreement between USA & Canada

S. Carpenter, ARI

Page 124: AlChE-Global-CCS_Institute-Presentation-101813

Why is Z-741-12 important?

•  Additional(ity) – in addition to business as usual

•  Measurable – MVA, MMV, MRV

•  Independently Audited – 3rd party, no OCI •  Unambiguously Owned – based clearly on

domestic and international law, no double counting

•  Address/Account for leakage – outside of the project boundary – MVA, MMV, MRV

•  Permanent – non-reversible S. Carpenter, ARI

Page 125: AlChE-Global-CCS_Institute-Presentation-101813

ISO TC 265 – CCS

Standardization of design, construction, operation, and environmental planning and management, risk management, quantification, monitoring and verification, and related activities in the field of carbon dioxide capture, transportation, and geological storage (CCS).

S. Carpenter, ARI

Page 126: AlChE-Global-CCS_Institute-Presentation-101813

ISO TC 265 – CCS

•  June 2012: TC-265 Organized in Paris, France

•  February 2013: 2nd Plenary Meeting in Madrid, Spain

•  Sept 23-25, 2013: 3rd Plenary Meeting Beijing, China

•  April 2014: 4th Plenary Meeting, Berlin, Germany

•  5th Plenary Meeting TBD (hopefully, USA)

•  36 months to deliver draft standard

•  24 months to debate, ballot, and resolve issues

•  US TAG is always looking for a few good experts!

S. Carpenter, ARI

Page 127: AlChE-Global-CCS_Institute-Presentation-101813