42
www.h2training.eu Chapter: Alternative Vehicle Concepts The chapter gives an overview of working- principles and concepts of alternative drives and presents exemplary cars. The focus is on fuel cell vehicles.

Mazda Rotary Engine Chapter 2 Vehicle Concepts En

Embed Size (px)

DESCRIPTION

Experience Mazda Zoom Zoom Lifestyle and Culture by Visiting and joining the Official Mazda Community at http://www.MazdaCommunity.org for additional insight into the Zoom Zoom Lifestyle and special offers for Mazda Community Members.

Citation preview

Page 1: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu Chapter: Alternative Vehicle Concepts

The chapter gives an overview of working-principles and concepts of alternative drives and presents

exemplary cars. The focus is on fuel cell vehicles.

Page 2: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Contents

1. Introduction: European and US emission-laws.

2. Internal combustion engines (ICE). Diesel- and gasoline engine. Rotary-Engine (Wankel engine).

3. Hybrid-Drives. Mild-Hybrids. Full-Hybrids. Plug-In Hybrids.

4. Electrical Drives. Batteries. Fuel Cells.

5. Fuel Cell Vehicles. Types and car-concepts. Components. Efficiency.

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Page 3: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

EURO emission standards

Gasoline engine Euro 1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6

Implementation June 1992 Jan.1996 Jan.2000 Jan.2005 Sept.2009 Sept.2014

CO [mg/km] 3160 2200 2300 1000 1000 1000

HC [mg/km] X X 200 100 100 100

HC + NOx [mg/km] 1130 500 X X X X

NOx [mg/km] X X 150 80 60 60

NMHC* [mg/km] X X X X 68 68 X: no critical value, *NMHC: non-Methane-Hydrocarbons

Gasoline (emissions ins mg/km)

Diesel (emissions in mg/km)

Source: Aigle/Krien/Marz 2007, 19

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Diesel engine Euro 1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6

Implementation June 1992 Jan.1996 Jan.2000 Jan.2005 Sept.2009 Sept.2014

CO [mg/km] 2720 100 640 500 500 500

HC + Nox [mg/km] X 700/ 900* 560 300 230 170

NOx [mg/km] X X 500 250 180 80

PM [mg/km] 140 80/ 100* 50 25 5 5 X: no critical value, *Higher values for market introduction of direct ignition engines

Source: Aigle/Krien/Marz 2007, 19

I

Page 4: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

EURO emission standards: Nitrogen- Oxides and Particles

180

80

500

250

606080

150

0

100

200

300

400

500

600

Euro 31.1.2000

Euro 4 1.1.2005

Euro 51.9.2009

Euro 61.9.2014

NO

x [

mg

/km

]

Diesel Benzin

50

25

5 55 5

180

80

0

20

40

60

80

100

120

140

160

180

200

Euro 11.6.92

Euro 21.1.96

Euro 31.1.00

Euro 4 1.1.05

Euro 51.9.09

Euro 61.9.14

Per

ikel

PM

[m

g/k

m]

Diesel

DI-Benzin

Nitrogen Oxides

Particles

Source:Aigle/Krien/Marz 2007,72

Source:Aigle/Krien/Marz 2007,77

NOx and Particles are health hazards.

Especially nano particles (PM) are suspected to be dangerous.

Diesel-engines emit much more NOx and PM than gasoline-engines.

Particle-Filters and NOx-exhaust after-treatments are necessary for a “clean” diesel.

Restrictions for older diesel-cars in urban areas. (EU particular matter directive)

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 5: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

California's Low-Emission-Act

California has the world-wide strongest emission law.

California claims a 4% market-share of Zero Emission Vehicles (ZEV).

Hybrids and natural gas cars can be credited.

ZEV are only Fuel Cell- and Battery cars.

Note 1: There's no limit for CO2.

Note 2: The production of a fuel produces emissions !

LEV - Low Emission VehicleULEV - Ultra Low E. VSULEV - Super Ultra Low E. V.EZEV - Equivalent Zero E. V.PZEV1 - Partial Zero E. V.ZEV - Zero Emission Vehicle

Data: Aigle/Krien/Marz 2007, 24own Illustration

0

10

20

30

40

50

LEV ULEV SULEV EZEV PZEV1 ZEV

Em

isio

ns

[mg

/km

]

NOx NMOG

HCHO PMPart 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 6: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Overview Fuels

Fuels on the left-side are used in diesel-engines. (diesel-ICE).

Fuels on the right side are compatible to gasoline-engines (Otto-ICE).

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Source:Aigle/Krien/Marz 2007, 43

B

Page 7: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Internal Combustion Engines (ICE)Principle Invention in the 1876:

First four-stroke cycle engine developed by Nikolaus August Otto.

First automobile in 1886:

Developed by Gottfried Daimler and Carl Benz.

Four-stroke principle:

Intake.

Compression.

Ignition.

Exhaust.

Engine-Types:

Diesel engine (self-ignition).

Otto engine . Nikolaus Otto Rudolph Diesel

Source: Wikipedia 2007

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Source: WBZU 2007

Exhaust gases

Exhaust valve

Piston

Cylinder

Connecting rod

Crankshaft

Rotating direction

Intake valve

Sparking Plug

fuel-air mixture

Piston rings

B

Page 8: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

A Example: DaimlerChrysler BlueTec.The cleanest Diesel ever known?

Diesel engine V6.

Displacement: 2987 ccm.

Maximal output: 154 kW.

Maximal torque: 526 Nm.

Fuel consumption: 7,0 Litre/km.

Cruising range: 1200 km.

Top-Speed: 250 km/h.

Performance: 0-100 km/h: 6.6 sec.

NOx exhaust aftertreatment (DeNOx).

Costs: 39.780 EUR.

Mercedes E320 BluetecIntroduction US-market in 2007,(Permission in 45 States)

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Discussion: Future of Diesel-engines?Established Technology versus alternative drives

B

Page 9: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

The Hydrogen ICE –A conventional drive with a new fuel

The design of a H2-Engine is similar to a petrol.

Differences result from the specifics of hydrogen and constructive measurements are necessary to avoid backfires.

Cars with a H2-ICE are rated as PZEV in California.

NOx-Emissions occur because nitrogen is in the combustion gas.

The H2-ICE is less efficient than fuel cells.

BMW plans to test 100 cars with a H2-ICE in 2008 (Hybrogen7).

Hydrogen7 from BMWSource: BMW 2006

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Discussion: Most car manufacturer consider hydrogen in combination with fuel cells as the concept for the future.Why does BMW focuses on the H2-ICE ?

B

Page 10: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Rotation-Engine: Principle

First engine in 1954:

Felix Wankel.

First adoption:

Audi Ro80 (until 1977).

Four-stroke principle:

But: A rotary piston is used instead of a linear piston.

Main-advantage:

compact design.

Felix Wankel

Source: HyCar 2006

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Air-Intake

Exhaust gases

Eccentric shaft

Electrical connected

H2-injector nozzle

B

Page 11: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

A Example: Mazda's RX-8 Hydrogen REThe last “sign of life” of Wankel´s engine?

Two rotary engines. Bivalent: Gasoline and Hydrogen

(CGH2). Displacement: 2x654ccm (1.308ccm). Maximal Output engine:

Max. Output gasoline: 154 kW. Max Output Hydrogen: 80 kW.

Torque. gasoline: 222 Nm. Hydrogen:140 Nm.

Tank: Hydrogen: 110 Litre (@350 bar). Tank gasoline 61 Litre.

Cruising Range: Hydrogen. 100 km. Gasoline: 549 km.

Top-Speed 170 km/h (H2 mode). Curb-weight: 1460 kg. Price: concept car.

Mazda-RX8Source: Mazda 2006

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 12: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Hybrid Cars

Invention in 1902:

Ferdinand Porsche.First mass-production vehicle in 1997

Toyota Prius.

Today:

Toyota sold several hundred-thousands cars of the “Prius II” worldwide. Mainly in the US and Japan (see figure).

Most car-manufacturer develop hybrid-cars today.

Basic idea:

Support of the combustion engine by a electrical engine.

Storage of electrical energy in batteries, e.g. breaking energy.

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Source: Manager-Magazin 2005

B

Page 13: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Hybrid Cars: Principles and concepts

Different forms of Hybrid-cars: Micro-Hybrids: electric start&stop

automatic.

Mild-Hybrids: recuperation of braking energy.

Full-Hybrids can drive in an electrical mode.

Different structure of drive: Parallel Hybrids.

Serial Hybrids.

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Source: Aigle/Marz 2007, 65

B

Page 14: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Parallel and serial hybrids

In a parallel system the ICE and the electric motor can transmit the power to the transmission. Main advantage: Both drives

can be used simultaneously.

In a serial hybrid the ICE runs as generator to produce electrical power. Only the electrical motor conducts the transmission. Main advantage: The ICE can

always run wit good efficiency.

In mixed-systems, so called serial-parallel systems, both advantages can be combined. Source: Bady 2000

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 15: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

An example: Toyota PriusA success-story made in Japan Combustion-engine: 4-Cylinder Otto-

engine: Displacement::1497 ccm. Nominal Power: 57 kW. Nominal Torque: 115 Nm (@ 4000

U/min). Electrical-Engine: Synchron AC engine:

Nominal Power: 50 kW. Nominal Torque: 400 Nm (@ 1200

U/min). Battery: Ni-MH. Fuel consumption: 4,3 Litre. Cruising range: 1050 km. Tank: 45 Litre. Top speed:: 170 km/h. Performance 0-100km/h: 10,9 sec. Curb-weight: 1400 kg. CO2-Emissions: 104 g/km. Price: 24.070 €

Source: Toyota 2006

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Toyota Prius

B

Page 16: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Electric Vehicles

Electric Vehicle von TrouveSource: Elektroauto-Tipp 2006

First electric car in 1881: Gustav Trouve.

An electric vehicle was the first car that reached a Top-Speed of 100 km/h in 1889.

Battery-Types: Lead acid battery.

New battery types.

Type of electrical motors: Direct current (dc).

Alternating current (ac).

Electrical motors have high efficiencies and a good torque at lower revolutions.

Part 1Part 1Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 17: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Overview Traction-Batteries Lead acid-Batteries

Common technology, but energy-density is too low.

Limited cruising range, batteries are too heavy.

Cars only play a role in certain niches (e.g. as city car).

New battery-technologies

Nickel-cadmium, Nickel-Metal Hydride, Lithium-Ion.

Only energy-density of Lithium-Ion batteries are sufficient to reach adequate cruising ranges. The electrical car comes out of the niche.

Problems: Costs, safety and life-time.

Source: Aigle/Marz 2006, 77

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

I

Page 18: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

A example: Mitsubishi Lancer Evolution:Li-Ion Batteries and in-wheel motors

Four synchronic in-wheel motors. Max. Power: 50 kW. Max. Torque: 518 Nm. Batteries: Li-on.

Capacity 95 AH. Off-load Voltage: 336V. Nominal energy: 32 kWh.

Cruising range: 250 km. Top-Speed: 180 km/h. Curb-Wight:1590 kg. CO2-Emissions: 0 (local). Price: Prototype. Series-Production planned in

2010.

Mitsubishi Lancer Evolution

Source: Mitsubishi 2005

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 19: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

The Tesla Roadster

6831 rechargeable Li-Ion batteries are used in the Tesla.

Time to charge the batteries: 3,5 hours.

Life-time of the batteries is enough for 100.000 miles.

New Performance with Li-Ionen batteries!

Source: Umweltbrief 2007

B

Page 20: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Fuel Cell Cars

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Page 21: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

History of H2-Vehicles

1807: First H2-ICE by Francois Isaac de Rivaz. 1839: Discovery of the functional principle of the fuel cell by

Sir William Grove. 1860: 1-Cylinder gas engine by Jean Joseph Etienne

Lenoir. Production of H2 by electrolysis on board the car. 1875 - 1890: Development of the 4-stroke combustion

engine for liquid fuels by Otto, Benz and Daimler. 1933: Combustion of H2 with on-board reforming of

ammonia by Nosk Hybdro. 1967: First fuel cell driven electric-car by General Motors. 1970: First fuel cell – battery hybrid vehicle (Austin A40)

with an approval for road-service. Karl Kordesch. 1970-1990: Continuance of the development of the H2-ICE.

Especially in Japan by Musashi. Since 1990: Systematic development of fuel cell drives by

Mercedes-Benz, Toyota, Opel, Audi, Honda und Ford. 1994: Fuel Cell-Transporter Necar1 by DaimlerChrysler Since 2000: Field-tests with FC-Vehicles. 2003: Field-test with 60 fuel cell driven “A-Klasse” by

DaimlerChrysler (worldwide 60 cars). 2006: German government invests 500 Mio. Euros over 10

year for market introduction of fuel cell vehicles.

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 22: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Introduction: FC-VehiclesTypes of fuel cells

Source: Jörissen/Garche 200,17. Own additions

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

I

Page 23: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Introduction: Characteristics of fuel cell types

AFCPEFC / DMFC

PAFC MCFC SOFC

Temperature low high

Catalyst pure less pure

Gas specification clean less clean

Cell efficiency low high

System complexity

high low

Start-Up-Time At once high

Dynamic high low

<100°C Up to 1000°C

Platinum metal

4-5.0 H2CnHm

40-50% 50-60%

ReformingSystem Internal Ref.

Seconds Hours

Source: own illustration

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

I

Page 24: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Which type for which application ?

Continuous loads

CHP-Unit for industrial use

Base load plants

Golden rule:

Dynamic loads

FC-Vehicles

Mini CHP-Units. for households

Portable applications

Peak shaving, UPS

PEFC

(DMFC)

PAFC

MCFC

SOFC

But: Not rule without a exception !

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 25: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Concepts of fuel cell vehicles

DaimlerChrysler developed a prototype (Necar5) with a methanol on-board reformer.

Daimler stopped its activities and followed the Hydrogen concept.

Most of the car manufacturer focus on direct hydrogen storage.

Most vehicles use compressed hydrogen gas. It can be compressed up to 350 bar. In near future 700 bar tanks are available.

Liquid hydrogen is stored in cryogen tanks. Hydrogen liquefies at minus 253°C.

Source: Aigle/Marz 2006, 85

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 26: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Main components of a H2-FCV

1: Electrical Engine.2: Fuel-Cell System.3: High-Pressure vessels.4: High-voltage Battery.

Fuel Cell A-Klasse of DaimlerChryler Source: Stauch 2005

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 27: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Energy flow in a Fuel Cell Vehicle

In a fuel car the chemical energy of H2 is converted into electrical energy.

A ICE converts the thermal energy of the fuel into mechanical energy (Karnot-process).

Compared to the Carnot-process the electrochemical conversion is more efficient.

Source: Los Alamos 1999, 5

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 28: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Methanol Fuel Cell Vehicles (NECAR V)

Fuel Processor System Specifications

Fuel: Methanol (CH3OH). H2 flow rate 60 Nm³/h. Efficiency 86%. Start-up time1 minute. Start from below 0°C possible. Turn-down ratio 1:40. Dynamics1.5 seconds (idle-90%load) . Calculated cost $1,750 @ 100,000 units/yr. per unit$3,550 @ 10,000 units/yr. Dimensions 800x260x320 mm. Volume / weight65 ltr/ 95 kg .

Fuel Cell System Specifications Power of fuel cellsystem75 kW el,gross/ 60 kW el, net. Emissions <SULEV. Volume / weight332 ltr/ 385 kg. System net efficiency> 40 %.

Source: Tillmetz/Benz 2006

Source: Tillmetz/Benz 2006

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 29: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Flow chart of a Methanol FCV

Source: Los Alamos 1999, 16

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 30: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

The fuel cell stack (Ballard)

Impressive technical achievements over the last years.

Ballard is the worldwide best-known stack-manufacture for mobile cars.

Hurdles are: costs, life-time and cold-start. But only a “small” gap to the performance of today's ICE.

Ballard MK902 Light Duty (LD)

Ballard MK902 Heavy Duty (HD)

Data: Budd 2006, 14-17, own illustration

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 31: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Fuel Cell System XcellsisTMHY-80

Power electronics

Cooling pump

System module

Fuel Cell (80 kW)

Control electronics

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Source: Tillmetz/Benz 2006

B

Page 32: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Tank-System for compressed Hydrogen gas (CHG)

CGH2: compressed gaseous hydrogen,

Pressure 35–70 MPa and room temperature.

Usually 2 or 3 vessels can be placed in a car. In busses up to 8 vessels can be placed.

Cruising range is between 200km (350 bar) up to 500 km (700 bar).

Source: Helmolt/Eberle 2007, 837

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 33: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Tank-System for liquid hydrogen (LH2)

Operating temperature of in-between 20 and 30 K and 0.5 to max 1 MPa pressure. Problem: Unavoidable head flow through:

Thermal conduction. Convection. Thermal radiation.

A efficient multi-layer vacuum super insulation is necessary (approximately 40 layers of metal foil).

Boil-off losses after several days. Energy to liquefy hydrogen consumes 30% of the stored chemical energy.

Source: Helmolt/Eberle 2007, 838

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 34: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

A example: DaimlerChryslers f-cell

Three-Phase asynchronous motor: Nominal Power: 65 kW.

Nominal Torque: 210 Nm.

Fuel Cell System: PEFC Ballard Mark 902.

Nominal Power: 85 kW.

Batteries: NiMh 20kW.

Tank: CGH2@350bar: 1,8 kg.

Consumption: 4,2 l Diesel equivalent.

Cruising-Range: 160 km.

Top-Speed: 145 km/h.

Performance: 16 sec

Costs: Prototype: Field-test of 60 cars since 2002.

F-cell DaimlerChrysler

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Only water! B

Page 35: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

GM´s Chevrolet Equinox Fuel Cell

Electric traction: 73 kw 3-Phase asynchronous motor. 94 kw max. Nominal Torque 320 Nm.

Fuel Cell System: Stack: 440 cells, 93 kW. NiMH battery 35 kW. Operation life: 2.5 years, 80.000km. Operation temperature: -25 to +45°C.

Fuel storage: 3 CGH2 vessels. 70 MPa. 4.2. kg Hydrogen.

Performance: Acceleration: 0-100 km/h in 12s. Top speed 160 km/h. Operation range 320 km.

Curb weight: 2010 kg.

Source: Helmolt/Eberle 2007, 842

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 36: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Comparison of Efficiency and CO2-Emission

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

[ E

ffic

ienc

y (%

) ]

Hydrogen-driven FC Zafira (HydroGen3) Diesel Zafira (X20DTL Engine)

1. Gear2. Gear

3. Gear

4. Gear

5. Gear

Average efficiency (European Drive Cycle): Efficiencies: 36 % / 22 %CO2-Emissions (direct): 0 g/km / 177 g/km

[ Km/h ]

Source: Hermann/Winter 2003

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 37: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Overall efficiency FC-car (example DC)

100 % l H2

37.7 % overall efficiency tank to whell

62.2 % FC-output 37.8 % Heat

45.8 % Converter output 16.4 % auxilliaries

37.7 % Wheel8.1 % converter,motor, gear,differential

Data: Lamm 2002

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

B

Page 38: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Fuel Cell Busses DaimlerChryslers “Citaro-Bus”

based on fuel cell technology.

27 Citaro buses were tested during 2003 to 2005 in 9 European cities.

Stack-Technology from Ballard: Two modules “MK902 Heavy

Duty“ with 300 kW.

Tank-System 9 CGH2-vessels with 350 bar

can store 1845 litre.

operating range 200 to 250 kilometres.

maximum speed approx. 80 kilometres.

Source: Fuel Cell Bus Club 2004

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Fuel Cell Bus “Citaro”

B

Page 39: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

H2 Filling Stations - worldwide

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

299 filling stations worldwide !Source: H2stations.org by LBST (LBST 2007) B

Page 40: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

H2 Filling Stations – Europe

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Source: H2stations.org by LBST (LBST 2007) B

Page 41: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Sources IAigle, Thomas; Marz, Lutz (2007a): Automobilität und Innovation. Versuch eine interdisziplinären

Systematisierung. Discussion Paper SPIII 2007-102. Wissenschaftszentrum für Sozialforschung Berlin

Aigle, Thomas; Krien, Philipp; Marz, Lutz (2007): Die Evaluations-Matrix. Ein Tool zur Bewertung antriebs- und kraftstofftechnologischer Innovationen in der Automobilindustrie. Discussion Paper SPIII 2007-105. Wissenschaftszentrum für Sozialforschung Berlin

Bady, Ralf (2000): Hybrid-Elektrofahrzeuge – Strukturen und Entwicklungen. Vortrag, 6. Symposium Elektrische Straßenfahrzeug. Technische Akademie Esslingen.

Budd, Geoff (2006): A fuel cell bus project for Europe – Lessons learned from a fuel cell perspektive. Vortag, CUTE-Abschlusskonferenz. 22.5.2006, Hamburg.

BMW (2006a): Der BMW Hydrogen 7 – eine neue Ära der Mobilität. Pressemitteilung, Internet: www.7-forum.com/news/Der-BMW-Hydrogen-7-eine-neue-Aera-der-Mo-1285.html. Zugriff: 10.10.2006

Fuel Cell Bus Club (2004) Background Information / Fuel Cell Technology / New Generation of Buses Internet: /www.fuel-cell-bus-club.com/index.php?module=pagesetter&func=viewpub&tid=1&pid=116. zugriff: 17.12.2007

Helmolt von, Rittmar; Eberle, Ulrich (2007): Fuel cell vehicles: Status 2007. In: Journal of Power Sources, 165 (2007), S. 833-845

Herrmann, M.; Winter, U.: Fuel Cells 2003, 3, No. 3, 141 ff

HyCar (2006): Der Wasserstoff-Wankelmotor. Informationsseiten über Wasserstofffahrzeuge von Jürgen Kern. Internet: www.hycar.de/wankel.htm. Zugriff: 04.10.06

Jörissen, Ludwig; Garche, Jürgen (2000): Brennstoffzellen für den Fahrzeugantrieb. In: Wengel, Jürgen; Schirmeister, Elna (Hg.): Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die baden-württembergische Industrie. Abschlussbericht. Karlsruhe, Februar 2000, S. 13-48.

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5

Page 42: Mazda Rotary Engine Chapter 2 Vehicle Concepts En

www.h2training.eu

Sources II

Lamm, Arnold (2006): PEM-BZ-Systeme für den mobilen Einsatz. Vortrag, DaimlerChrysler Forschungszentrum Ulm. Internet: www.sfb374.uni-stuttgart.de/rv_02_03/PEM_Brennstoffzelle_Lamm.pdf. Zugriff: 06.11.2006

LBSt (2007): Hydrogen filling stations worldwide. Internet: www.h2stations.org

Los Alamos (1999): Fuel Cells. The green Power.

Manager-Magazin (2005): Hybridautos – Der Airbag-Effekt. Artikel, Internet: www.manager-magazin.de/unternehmen/artikel/0,2828,373740,00.html. Zugriff: 22.10.2006

Mitshubishi (2005): Mitsubishi Motors to drive forward development of next-generation EVs - Colt EV test car uses in-wheel motors & lithium-ion batteries. Pressemitteilung, Internet: http://media.mitsubishi-motors.com/pressrelease/e/corporate/detail1269.html. Zugriff: 02.11.2006

Stauch, Thorsten (2005): Präsentation Technik F-Cell. Vortrag, Praxis-Seminar Wasserstoff betriebene Fahrzeuge, Weiterbildungszentrum Brennstoffzelle. 27.1.2005, Ulm.

Tillmetz, Werner; Benz, Uwe (2006): Methanol Fuel Cell Power Train. Vortrag. European Biofuel Congress, 17.Oktober 2006, Essen

Toyota (2006): Seriell-paralleles Hybridsystem - Fluss der Systemenergie. Schaubild, Internet: www.hybridsynergydrive.com/de/series_parallel.html. Zugriff: 22.10.2006

Umweltbrief (2007): Tesla - ein Elektro-Roadster aus USA. Internet: www.umweltbrief.de/neu/html/aktuell.html#Tesla-Elektro-Roadster. Zugriff: 17.12.2007

Part 1Part 1

Part 2Part 2

Part 3Part 3

Part 4Part 4

Part 5Part 5