Cosmological Perturbations and Numerical Simulations

Preview:

DESCRIPTION

Talk given at Queen Mary, University of London in March 2010. Cosmological perturbation theory is well established as a tool forprobing the inhomogeneities of the early universe.In this talk I will motivate the use of perturbation theory andoutline the mathematical formalism. Perturbations beyond linear orderare especially interesting as non-Gaussian effects can be used toconstrain inflationary models.I will show how the Klein-Gordon equation at second order, written interms of scalar field variations only, can be numerically solved.The slow roll version of the second order source term is used and themethod is shown to be extendable to the full equation. This procedureallows the evolution of second order perturbations in general and thecalculation of the non-Gaussianity parameter in cases where there isno analytical solution available.

Citation preview

Cosmological Perturbations andNumerical Simulations

Ian Huston

Astronomy Unit

24th March 2010

arXiv:0907.2917, JCAP 0909:019

perturbations

Long review: Malik & Wands 0809.4944

Short technical review: Malik & Matravers 0804.3276

T(η, xi) = T0(η) + δT(η, xi)

δT(η, xi) =∞∑

n=1

εn

n!δTn(η, xi)

ϕ = ϕ0 + δϕ1 +1

2δϕ2 + . . .

T(η, xi) = T0(η) + δT(η, xi)

δT(η, xi) =∞∑

n=1

εn

n!δTn(η, xi)

ϕ = ϕ0 + δϕ1 +1

2δϕ2 + . . .

Gauges

Background split notcovariant

Many possible descriptions

Should give same physicalanswers!

First order transformation

ξµ1 = (α1, β

i1, + γi

1)

⇓δ̃ϕ1 = δϕ1 + ϕ′0α1

Perturbed FRW metric

g00 = −a2(1 + 2φ1) ,

g0i = a2B1i ,

gij = a2 [δij + 2C1ij] .

Choosing a gauge

Longitudinal: zero shear

Comoving: zero 3-velocity

Flat: zero curvature

Uniform density: zero energydensity

. . .

δGµν = 8πGδTµν

⇓Eqs of Motion

non-Gaussianity

Some reviews: Chen 1002.1416, Senatore et al. 0905.3746

Sim 1

Simulations from Ligouri et al, PRD (2007)

Sim 2

Simulations from Ligouri et al, PRD (2007)

Gaussian fields:All information in

〈ζ(k1)ζ(k2)〉 = (2π)3δ3(k1 + k2)Pζ(k1) ,

where ζ is curvature perturbation on uniformdensity hypersurfaces.

〈ζ(k1)ζ(k2)ζ(k3)〉 = 0 ,

〈ζ4(ki)〉 = 〈ζ(k1)ζ(k2)〉〈ζ(k3)ζ(k4)〉+ 〈ζ(k2)ζ(k3)〉〈ζ(k4)ζ(k1)〉+ 〈ζ(k1)ζ(k3)〉〈ζ(k2)ζ(k4)〉 .

Bispectrum:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ3(k1+k2+k3)B(k1, k2, k3)

Local (squeezed) Equilateral

B(k1, k2, k3) ' fNLF (x2, x3) ,

xi = ki/k1 , 1− x2 ≤ x3 ≤ x2 .

Local

0.50.6

0.70.8

0.91

x2

0.20.40.60.81 x3

0

2

4

6

8

FHx2 , x3L

0

2

4

Higher Deriv.

0.50.6

0.70.8

0.91

x2

0.20.40.60.81 x3

00.25

0.5

0.75

1

FHx2 , x3L

00.25

0.5

Babich et al. astro-ph/0405356

WMAP7 bounds (95% CL)

−10 < f locNL < 74

f locNL > 1

rules out ALL single fieldinflationary models.

WMAP7 bounds (95% CL)

−10 < f locNL < 74

f locNL > 1

rules out ALL single fieldinflationary models.

One way of getting local fNL

ζ(x) = ζL(x) + 35f

locNLζ2

L(x)

∆T

T' −1

5ζ , f loc

NL > 0

⇓∆T < ∆TL

Sim 1: fNL = 1000

Simulations from Ligouri et al, PRD (2007)

Sim 2: fNL = 0

Simulations from Ligouri et al, PRD (2007)

code():

Paper: Huston & Malik 0907.2917, JCAP

2nd order equations: Malik astro-ph/0610864, JCAP

Approaches:

δN formalism

Moment transport equations

Field Equations

ϕ = ϕ0 + δϕ1 +1

2δϕ2

δϕ′′2 (ki) + 2Hδϕ

′2(ki) + k

2δϕ2(ki) + a

2[V,ϕϕ +

8πG

H

(2ϕ′0V,ϕ + (ϕ′0)2

8πG

HV0

)]δϕ2(ki)

+1

(2π)3

∫d

3pd

3qδ

3(ki − pi − q

i)

{16πG

H

[Xδϕ

′1(pi)δϕ1(qi) + ϕ

′0a

2V,ϕϕδϕ1(pi)δϕ1(qi)

]

+

(8πG

H

)2ϕ′0

[2a

2V,ϕϕ

′0δϕ1(pi)δϕ1(qi) + ϕ

′0Xδϕ1(pi)δϕ1(qi)

]

−2

(4πG

H

)2 ϕ′0X

H

[Xδϕ1(ki − q

i)δϕ1(qi) + ϕ′0δϕ1(pi)δϕ

′1(qi)

]

+4πG

Hϕ′0δϕ

′1(pi)δϕ

′1(qi) + a

2[V,ϕϕϕ +

8πG

Hϕ′0V,ϕϕ

]δϕ1(pi)δϕ1(qi)

}

+1

(2π)3

∫d

3pd

3qδ

3(ki − pi − q

i)

{2

(8πG

H

)pkqk

q2δϕ′1(pi)

(Xδϕ1(qi) + ϕ

′0δϕ

′1(qi)

)

+p2 16πG

Hδϕ1(pi)ϕ′0δϕ1(qi) +

(4πG

H

)2 ϕ′0H

[ plql −

piqjkjki

k2

ϕ′0δϕ1(ki − q

i)ϕ′0δϕ1(qi)

]

+2X

H

(4πG

H

)2 plqlpmqm + p2q2

k2q2

[ϕ′0δϕ1(pi)

(Xδϕ1(qi) + ϕ

′0δϕ

′1(qi)

) ]

+4πG

H

[4X

q2 + plql

k2

(δϕ′1(pi)δϕ1(qi)

)− ϕ

′0plq

lδϕ1(pi)δϕ1(qi)

]

+

(4πG

H

)2 ϕ′0H

[plqlpmqm

p2q2

(Xδϕ1(pi) + ϕ

′0δϕ

′1(pi)

) (Xδϕ1(qi) + ϕ

′0δϕ

′1(qi)

) ]

+ϕ′0H

[8πG

plql + p2

k2q2δϕ1(pi)δϕ1(qi) −

q2 + plql

k2δϕ′1(pi)δϕ

′1(qi)

+

(4πG

H

)2 kjki

k2

(2

pipj

p2

(Xδϕ1(pi) + ϕ

′0δϕ

′1(pi)

)Xδϕ1(qi)

)]}= 0

2� Single field slow roll

2 Single field full equation

2 Multi-field calculation

∫δϕ1(q

i)δϕ1(ki − qi)d3q

code():

1000+ k modes

python & numpy

parallel

Four potentials

10−61 10−60 10−59 10−58

k/MPL

1.8

2.0

2.2

2.4

2.6

2.8

3.0P2 R

1×10−9

V (ϕ) = 12m2ϕ2

V (ϕ) = 14λϕ4

V (ϕ) =σϕ23

V (ϕ) =U0 + 12m2

0ϕ2

Source term

0 10 20 30 40 50 60N − Ninit

10−17

10−13

10−9

10−5

10−1|S|

V (ϕ) = 12m2ϕ2

V (ϕ) = 14λϕ4

V (ϕ) =σϕ23

V (ϕ) =U0 + 12m2

0ϕ2

Second order perturbation

61626364Nend −N

−4

−3

−2

−1

0

1

2

3

4

1 √2πk

3 2δϕ

2

×10−95

Future Plans:

Full single field equation

Multi field equation

Vector & Vorticity similarities

Rework code for efficiency

Summary:

Perturbations seed structure

2nd order needed for fNL

Numerically intensive calculation

IA(k) =

∫dq3δϕ1(q

i)δϕ1(ki − qi) = 2π

∫ kmax

kmin

dq q2δϕ1(qi)A(ki, qi) ,

IA(k) = −πα2

18k

{3k3

[log

(√kmax − k +

√kmax√

k

)+ log

(√k + kmax +

√kmax√

kmin + k +√

kmin

)

2− arctan

( √kmin√

k − kmin

)]

−√

kmax

[ (3k2 + 8k2

max

) (√k + kmax −

√kmax − k

)+ 14kkmax

(√k + kmax +

√kmax − k

)]

+√

kmin

[ (3k2 + 8k2

min

) (√k + kmin +

√k − kmin

)+ 14kkmin

(√k + kmin −

√k − kmin

)]}.

10−61 10−60 10−59 10−58 10−57

k/MPL

10−10

10−9

10−8

10−7

10−6

ε rel

k ∈ K1

k ∈ K2

k ∈ K3

K1 =[1.9× 10−5, 0.039

]Mpc−1 , ∆k = 3.8× 10−5Mpc−1 ,

K2 =[5.71× 10−5, 0.12

]Mpc−1 , ∆k = 1.2× 10−4Mpc−1 ,

K3 =[9.52× 10−5, 0.39

]Mpc−1 , ∆k = 3.8× 10−4Mpc−1 .

Recommended