Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Polycrystalline Materials

  • View
    164

  • Download
    1

  • Category

    Science

Preview:

Citation preview

Computationally Efficient Protocols to

Evaluate the Fatigue Resistance of Polycrystalline Materials

Noah H. Paulson, Matthew W. Priddy, Surya R. Kalidindi, and

David L. McDowell

Motivation

*Welsch et al. (1994).

Processing Options

2

Ti-64Composition

TitaniumAluminumVanadium

Generate Microstructures

CPFEM: Calculate

local ๐œบ๐‘field

get FIP fields + FIP EVDs

Evaluate HCF resistance

HCF EvaluationExisting Approach

Smith (2013).

+UMAT

๐ป๐ถ๐น๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’:๐ƒ > ๐‚ > ๐

(0001)min: 0, max: 8

Basal texture

3

Material Property RepresentationSVE Concept

Kanit, et al. (2003).

Numerous samples are needed to capture the statistics of the properties of the material. Let us call these samples statistical volume elements (SVEs)

4

RVE SVE set

vs.

BackgroundFatigue Indicator Parameters

FIPs are a surrogate measure of driving force for fatigue crack formation and growth

Critical Plane Approach

โ€ข Fatemi-Socie Parameter

๐น๐ผ๐‘ƒ ๐น๐‘† =โˆ†๐›พ๐‘š๐‘Ž๐‘ฅ

๐‘

21 + ๐‘˜

๐œŽ๐‘š๐‘Ž๐‘ฅ๐‘›

๐œŽ๐‘ฆ

max

n

2

Crack formation due to intense

shear along the slip band of Ti-

6Al-4V Le Biavant, et al. (2001).

5

Fatemi, et al. (1988).

Problem StatementComputational Burdens

Hypothetical: Rank HCF resistance of the 12 heat treatments of Ti-64

๐ถ๐‘ƒ๐‘ˆ๐‘ก๐‘–๐‘š๐‘’ = 12 microstructures โˆ—100 SVEs

microstructureโˆ—

1.5 hours โˆ— 4 processors

๐‘†๐‘‰๐ธ= ๐Ÿ•๐Ÿ๐ŸŽ๐ŸŽ ๐ก๐จ๐ฎ๐ซ๐ฌ

A more efficient approach is needed to make computational fatigue analysis feasible for industrial applications

6

HCF Study MKS Approach

MKS: Predict local ๐œบ๐‘ก๐‘œ๐‘ก. field

Generate SVE set

(Statistical Volume Element)

get FIP fields + FIP EVDs

Evaluate HCF resistance

Estimate ๐œบ๐‘๐‘™from ๐œบ๐‘ก๐‘œ๐‘ก.

๐œบ๐‘’๐‘™

๐ˆ

๐œ ๐›ผ Integrate flow rule

๐›พ ๐›ผ

๐œบ๐‘๐‘™

๐œบ๐‘ก๐‘œ๐‘ก. โ‰… ๐œบ๐‘’๐‘™

7

The Materials Knowledge System (MKS) is a localization technique to estimate local response (e.g., ๐œ€๐‘–๐‘—) given

macroscopic applied condition

MKS Framework

๐œบ ๐’™

๐œบ ๐‘ฅ = ๐‘ฐ โˆ’ ๐‘…

๐ป

๐œถ ๐‘Ÿ, ๐‘› ๐‘š ๐‘ฅ + ๐‘Ÿ, ๐‘› ๐‘‘๐‘›๐‘‘๐‘Ÿ

+ ๐‘…

๐‘…

๐ป

๐ป

๐œถ ๐‘Ÿ, ๐‘Ÿโ€ฒ, ๐‘›, ๐‘›โ€ฒ ๐‘š ๐‘ฅ + ๐‘Ÿ, ๐‘› ๐‘š ๐‘ฅ + ๐‘Ÿ + ๐‘Ÿโ€ฒ, ๐‘›โ€ฒ ๐‘‘๐‘›๐‘‘๐‘›โ€ฒ๐‘‘๐‘Ÿ๐‘‘๐‘Ÿโ€ฒ โˆ’โ‹ฏ ๐œบ ๐‘ฅ

๐‘š ๐‘ฅ, ๐‘› =

๐ฟ

๐‘ 

๐‘€๐‘ ๐ฟ๐‘„๐ฟ(๐‘›)๐‘‹๐‘ (๐‘ฅ)

Microstructure function:

๐œถ ๐‘Ÿ, ๐‘› =

๐ฟ

๐‘ก

๐‘จ๐‘ก๐ฟ๐‘„๐ฟ ๐‘› ๐œ’๐‘ก ๐‘Ÿ

Influence function:

๐‘„๐ฟ ๐‘› : orthonormal Fourier basis ๐‘‹๐‘ (๐‘ฅ): indicator basis

(Kalidindi 2012), (Adams 2012), (Krรถner 1986), Yabansu (2014)

๐œบ ๐’™ = ๐’‚ ๐’™ ๐œบ ๐’™

Influence Function

8

HCF Study MKS Approach

MKS: Predict local ๐œบ๐‘ก๐‘œ๐‘ก. field

Generate SVE set

(Statistical Volume Element)

get FIP fields + FIP EVDs

Evaluate HCF resistance

Calibrate MKS Influence

Coefficients

Generate SVE set for training

FEM: Calculate local ๐œบ๐‘ก๐‘œ๐‘ก. field

Estimate ๐œบ๐‘๐‘™from ๐œบ๐‘ก๐‘œ๐‘ก.

๐œบ๐‘’๐‘™

๐ˆ

๐œ ๐›ผ Integrate flow rule

๐›พ ๐›ผ

๐œบ๐‘๐‘™

๐œบ๐‘ก๐‘œ๐‘ก. โ‰… ๐œบ๐‘’๐‘™

9

๐œบ๐‘๐‘™ =

๐›ผ=1

๐‘

๐›พ ๐›ผ ๐’”0๐›ผโจ‚๐’Ž0

๐›ผ

๐‘ ๐‘ฆ๐‘š

Calculate ๐œบ๐‘๐‘™

Calculate ๐œบ๐‘๐‘™

Calculate ๐œ ๐›ผ from ๐ˆ

๐œบ๐‘™๐‘œ๐‘๐‘Ž๐‘™

๐ˆ๐‘™๐‘œ๐‘.

๐œบ๐‘’๐‘™๐œบ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™

๐œบ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ โ‰ˆ ๐œบ๐‘’๐‘™

๐ˆ โ‰ˆ ๐‘ช๐œบ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™

๐›พ ๐›ผ = ๐›พ0๐œ ๐›ผ โˆ’ ๐œ’ ๐›ผ โˆ’ ๐œ… ๐›ผ

๐ท ๐›ผ

๐‘€

sgn ๐œ ๐›ผ โˆ’ ๐œ’ ๐›ผ

Integrate flow rule for ๐›พ ๐›ผ

(1) (2)

(3) (4)

10

HCF StudySVEs and Loading

DREAM.3D input information

โ€“ Grain size distributionโ€ข Avg. Grain Size: 43

elements

โ€“ Misorientation distribution

โ€“ Texture

xy

z

ฮตt

Fully-reversed cyclic loadingโ€ข x-, y-, and z-direction uniaxial strainโ€ข Periodic boundary conditions

11

HCF StudyMKS Results (ฮฑ-Ti Basal Texture)

ฮต11 mean error: 0.22%, ฮต11 max error: 1.3%

๐‘’๐‘Ÿ๐‘Ÿ โ‰ก๐œ€๐‘–๐‘—๐น๐ธ๐‘€ โˆ’ ๐œ€๐‘–๐‘—

๐‘€๐พ๐‘†

๐œ€๐‘–๐‘—๐น๐ธ๐‘€

12

HCF StudyMKS Results (ฮฑ-Ti Basal Texture)

๐œบ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ โ†’

13

HCF Study Results

14

Gumbel distribution

HCF Study Results

15

Gumbel distribution

โ€ข New protocol 240X faster than traditional protocolsโ€ข Traditional Protocol: 1.5 hours on 4 processors per SVEโ€ข New Protocol: 90 seconds on 1 processor per SVE

โ€ข Protocols have been developed to evaluate the HCF and LCF resistance of polycrystalline materials

๐›พ ๐›ผ = ๐›พ ๐›ผ ๐œ ๐›ผ , ๐œบ๐‘๐‘™ =

๐›ผ=1

๐‘

๐›พ ๐›ผ ๐‘ท ๐›ผ

โ€ข HCF Study: New protocol 240X faster than traditional protocols

HCF/LCF StudyConclusions

16

Acknowledgements

Also thanks to Donald S. Shih (Boeing), Yuksel C. Yabansu(GT), Dipen Patel (GT), and David Brough (GT)

GOALIFunding provided by:

Appendix

References

โ€ข Alharbi HF, Kalidindi SR. Int J Plasticity 2015;66:71.

โ€ข Adams BL, Kalidindi SR, Fullwood DT. Microstructure Sensitive Design for Performance Optimization: Elsevier Science, 2012.

โ€ข Bunge HJ, Moris PR. Texture Analysis in Materials Science: Butterworth & Co, 1982

โ€ข Fast T, Kalidindi SR. Acta Mater 2011;59:4595.

โ€ข Kalidindi SR. ISRN Mater Sci 2012;2012:13.

โ€ข Krรถner E. J Mech Phy Solids 1977;25:137.

โ€ข Landi G, Niezgoda SR, Kalidindi SR. Acta Mater 2010;58:2716.

โ€ข Przybyla C., Prasannavenkatesan R., Salajegheh N., McDowell D.L. Microstructure-sensitive modeling of high cycle fatigue. International Journal of Fatigue, Vol. 32, Iss. 3, (2010) pg. 512-525

โ€ข Przybyla C.P., McDowell D.L. Simulation-based extreme value marked correlations in fatigue of advanced engineering alloys. Procedia Engineering, Vol. 2, Iss. 1, (2010) pg. 1045-1056

โ€ข Smith BD. Masters Thesis 2013.

โ€ข Yabansu YC, Patel DK, Kalidindi SR. Acta Mater 2014;81:151.

19

Recommended