Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

Preview:

DESCRIPTION

The First Fundamental Theorem of Calculus looks at the area function and its derivative. It so happens that the derivative of the area function is the original integrand.

Citation preview

. . . . . .

Section5.4TheFundamentalTheoremofCalculus

V63.0121, CalculusI

April22, 2009

Announcements

I Quiz6nextweekon§§5.1–5.2

. . . . . .

Thedefiniteintegralasalimit

DefinitionIf f isafunctiondefinedon [a,b], the definiteintegralof f from ato b isthenumber∫ b

af(x)dx = lim

∆x→0

n∑i=1

f(ci) ∆x

. . . . . .

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then ∫ t1

t0v(t)dt = s(t1) − s(t0).

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then

C(x) = C(0) +

∫ x

0MC(q)dq.

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf ρ(x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is

m(x) =

∫ x

0ρ(s)ds.

. . . . . .

Myfirsttableofintegrals∫[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx∫

xn dx =xn+1

n + 1+ C (n ̸= −1)∫

ex dx = ex + C∫sin x dx = − cos x + C∫cos x dx = sin x + C∫sec2 x dx = tan x + C∫

sec x tan x dx = sec x + C∫1

1 + x2dx = arctan x + C

∫cf(x)dx = c

∫f(x)dx∫

1xdx = ln |x| + C∫

ax dx =ax

ln a+ C∫

csc2 x dx = − cot x + C∫csc x cot x dx = − csc x + C∫

1√1− x2

dx = arcsin x + C

. . . . . .

Outline

Myfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?

I Whenis g decreasing?I Overasmallinterval, what’stheaveragerateofchangeof g?

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?I Whenis g decreasing?

I Overasmallinterval, what’stheaveragerateofchangeof g?

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?I Whenis g decreasing?I Overasmallinterval, what’stheaveragerateofchangeof g?

. . . . . .

Theorem(TheFirstFundamentalTheoremofCalculus)Let f beanintegrablefunctionon [a,b] anddefine

g(x) =

∫ x

af(t)dt.

If f iscontinuousat x in (a,b), then g isdifferentiableat x and

g′(x) = f(x).

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=

1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

. . . . . .

MeettheMathematician: JamesGregory

I Scottish, 1638-1675I AstronomerandGeometer

I Conceivedtranscendentalnumbersandfoundevidencethatπ wastranscendental

I Provedageometricversionof1FTC asalemmabutdidn’ttakeitfurther

. . . . . .

MeettheMathematician: IsaacBarrow

I English, 1630-1677I ProfessorofGreek,theology, andmathematicsatCambridge

I Hadafamousstudent

. . . . . .

MeettheMathematician: IsaacNewton

I English, 1643–1727I ProfessoratCambridge(England)

I PhilosophiaeNaturalisPrincipiaMathematicapublished1687

. . . . . .

MeettheMathematician: GottfriedLeibniz

I German, 1646–1716I Eminentphilosopheraswellasmathematician

I Contemporarilydisgracedbythecalculusprioritydispute

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

Iddx

∫ x

af(t)dt = f(x)

I ∫ b

aF′(x)dx = F(b) − F(a).

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

Iddx

∫ x

af(t)dt = f(x)

I ∫ b

aF′(x)dx = F(b) − F(a).

. . . . . .

Outline

Myfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve.

Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =

2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

. . . . . .

Otherfunctionsdefinedbyintegrals

I Thefuturevalueofanasset:

FV(t) =

∫ ∞

tπ(τ)e−rτ dτ

where π(τ) istheprofitabilityattime τ and r isthediscountrate.

I Theconsumersurplusofagood:

CS(q∗) =

∫ q∗

0(f(q) − p∗)dq

where f(q) isthedemandfunctionand p∗ and q∗ theequilibriumpriceandquantity.

. . . . . .

Outline

Myfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’svelocityattime t = 5?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’svelocityattime t = 5?

SolutionRecallthatbytheFTC wehave

s′(t) = f(t).

So s′(5) = f(5) = 2.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Istheaccelerationofthepar-ticleattime t = 5 positiveornegative?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Istheaccelerationofthepar-ticleattime t = 5 positiveornegative?

SolutionWehave s′′(5) = f′(5), whichlooksnegativefromthegraph.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’spositionattime t = 3?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’spositionattime t = 3?

SolutionSinceon [0,3], f(x) = x, wehave

s(3) =

∫ 3

0x dx =

92.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

Solution

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionThecriticalpointsof s arethezerosof s′ = f.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionBylookingatthegraph, weseethat f ispositivefromt = 0 to t = 6, thennegativefrom t = 6 to t = 9.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionTherefore s isincreasingon[0, 6], thendecreasingon[6, 9]. Soitslargestvalueisatt = 6.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Approximately when is theaccelerationzero?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Approximately when is theaccelerationzero?

Solutions′′ = 0 when f′ = 0, whichhappensat t = 4 and t = 7.5(approximately)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionTheparticleismovingawayfromtheoriginwhen s > 0and s′ > 0.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionSince s(0) = 0 and s′ > 0 on(0, 6), weknowtheparticleismovingawayfromtheoriginthen.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionAfter t = 6, s′ < 0, sotheparticleismovingtowardtheorigin.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionWehave s(9) =∫ 6

0f(x)dx +

∫ 9

6f(x)dx,

wheretheleftintegralispositiveandtherightintegralisnegative.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionInordertodecidewhethers(9) ispositiveornegative,weneedtodecideifthefirstareaismorepositivethanthesecondareaisnegative.

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionThisappearstobethecase,so s(9) ispositive.

Recommended