WINDSCANNER.DK: LIDAR WIND SPEED MEASUREMENTS FROM A ROTATING SPINNER

Preview:

DESCRIPTION

WINDSCANNER.DK: LIDAR WIND SPEED MEASUREMENTS FROM A ROTATING SPINNER. T. Mikkelsen, K. Hansen, N. Angelou, M. Sjöholm, M. Harris, P. Hadley, R. Scullion, G. Ellis, G. Vives Risø DTU, Roskilde, Denmark Natural Power, Malvern, UK. WindScanner.dk - PowerPoint PPT Presentation

Citation preview

WINDSCANNER.DK:

LIDAR WIND SPEED MEASUREMENTS FROM A ROTATING SPINNER

T. Mikkelsen, K. Hansen, N. Angelou, M. Sjöholm, M. Harris, P. Hadley, R. Scullion, G. Ellis, G. Vives

Risø DTU, Roskilde, Denmark Natural Power, Malvern, UK

2 Risø DTU, Technical University of Denmark

WindScanner.dkFrom new Wind Lidar Technologytowards new Wind EnergyResearch Infrastructures…:

Technical focus

Scientific focus

RI focus

Current Status

EU ESFRIRoad Map

2010 ?

First CW Wind lidar 2004

MusketeerEX 2007/2008

SpinnerEX 2009

WindScanner.dk2010-2013

3 Risø DTU, Technical University of Denmark

WindScanner.dk methodology is based on 3-dimensional scanning with wind lidar's to determine the instantaneous turbulence fields:

Since 2005 new wind lidar's have enabled replacement of tall (80-300 m) MET masts

4 Risø DTU, Technical University of Denmark

5 Risø DTU, Technical University of Denmark

Ø

HH

• 25 kW Wind Turbine 1975:• Ø/H ~ 0.3

• 2.3 MW NM80• Height 59 m;• Ø=80H• <Ø/H ~ 1.4

6 Risø DTU, Technical University of Denmark

Spinner Integrated Lidar I: Experimental Setup:Pro-active wind turbine control from upwind measurements by lidars

integrated in the rotating Spinner… :

7 Risø DTU, Technical University of Denmark

Tjæreborg SPINNER-EX

2009Spinner – mounted

lidar

CW Lidar: ZephIR (50 Hz)

Wind Turbine: NM80(NegMicon/Vestas)

8 Risø DTU, Technical University of Denmark

Tjæreborg: ZephIR “Spinner-Ex.” …:

9 Risø DTU, Technical University of Denmark

10 Risø DTU, Technical University of Denmark

11 Risø DTU, Technical University of Denmark

Real-time LIDAR Raw data (50 Hz un-calibrated):

12 Risø DTU, Technical University of Denmark

Time series (10 s) of approaching wind conditions measured +100 m upwind:

Ex.: Inhomogeneous wind field

13 Risø DTU, Technical University of Denmark

Spinner Integrated Lidar II: Measurements and ResultsPro-active wind turbine control from upwind measurements by lidar's

integrated in the rotating Spinner… :

14 Risø DTU, Technical University of Denmark

Measurement Setup’s:

Period Wedge DistanceApril – May 2009 15o ~1.24ØJuly – August 2009 30o ~0.58Ø

Wind speed values per rotation (each frame contains 10 consecutive

scanning circles)

15 Risø DTU, Technical University of Denmark

The loci of the focussed lidar beamRadial wind speeds during a 10-min sampling period

Upwind @ 1.24 Ø (+ 100 m):

16 Risø DTU, Technical University of Denmark

Geometry

Radial Wind Speeds –Wind Turbine-referenced:

Horizontal Wind Speeds –ground-referenced:

17 Risø DTU, Technical University of Denmark

18 Risø DTU, Technical University of Denmark

19 Risø DTU, Technical University of Denmark

20 Risø DTU, Technical University of Denmark

21 Risø DTU, Technical University of Denmark

22 Risø DTU, Technical University of Denmark

23 Risø DTU, Technical University of Denmark

24 Risø DTU, Technical University of Denmark

25 Risø DTU, Technical University of Denmark

26 Risø DTU, Technical University of Denmark

27 Risø DTU, Technical University of Denmark

28 Risø DTU, Technical University of Denmark

29 Risø DTU, Technical University of Denmark

Results

Correlation between lidar and mast

Study of the approaching wind field

30 Risø DTU, Technical University of Denmark

Wind turbine Yaw-misalignment relative to time-averaged wind direction as measured by lidar:

0 2000 4000 6000 8000 30 20 10010203040

Tim e s wDegrees 1 0m in

5m in3m in2m in1m in3 0 s e c

Yaw misalignment angles at hub height (57m)

01:10 01:30 01:50 02:10 02:30 02:50 03:10 03:300

10

20

30

40

50

Tim e HH :MM Direction

Degrees W TY AWSo n ic 5 7 m

Dire

ctio

n [d

egre

es]

Time [HH:MM]

Time [sec]

Θ w [d

egre

es]

31 Risø DTU, Technical University of Denmark

0 2 4 6 8 100

100

200

300

400

500

600

700

u m sPo

werkW

0 2 4 6 8 100

100

200

300

400

500

600

700

u m s

PowerkW

0 2 4 6 8 100

100

200

300

400

500

600

700

u m s

PowerkW

0 2 4 6 8 100

100

200

300

400

500

600

700

u m sPo

werkW

0 2 4 6 8 100

100

200

300

400

500

600

700

u m s

PowerkW

0 2 4 6 8 100

100

200

300

400

500

600

700

u m s

PowerkW

10-min averages

Power curve measurements based on Spinner Lidar data:

Power curves from lidar wind speed 100 m (1.24 Ø) upwind

Power curves based on hub-height cup anemometer

1-min averages 1-s averages

Powe

r [kW

]Po

wer [

kW]

U [m/s] U [m/s] U [m/s]

U [m/s]

U [m/s]

U [m/s] U [m/s]

32 Risø DTU, Technical University of Denmark

Spinner Integrated Lidar III: Future Work 2D Rotor Plane Scans Pro-active wind turbine control from upwind measurements by lidars

integrated in the rotating Spinner… :

33 Risø DTU, Technical University of Denmark

Scanning in 2-D:

”Risley prism”

Dual-prism single-axis beam steering:

34 Risø DTU, Technical University of Denmark

Scope for further wind LIDAR integration:

Rotor Plane Upwind

Blade integrated

lidar

Spinner integrated

lidar

35 Risø DTU, Technical University of Denmark

Future research and applications:

1. More precise yaw alignment using lidar2. Proactive (typically +10 s) Pitch control3. Pro-active RPM control4. Warning and mitigating of extreme loads (from gusts)5. More percise power-curve measurememts6. …

Acknowledgements:The Tjæreborg “Lidar-in-spinner Experiment” was conducted as part of the Windscanner.dk RI activities 2009.Meteorology and turbine data have been provided via the Danish DAN-AERO MW project.Access to the NM80 research Turbine was granted by Vestas and Dong Energy.

Recommended