Thread 15213-S04, Recitation, Section A Thread Memory Model Thread Interfaces (System Calls) Thread...

Preview:

DESCRIPTION

– 3 – , S’04 Why Do We Care About Thread Useful for L7 Part II A very important way to implement modern concurrent systems What’s concurrency? Web Browser Web Server Web Browser Web Browser Web Server Web Server Proxy

Citation preview

ThreadThread15213-S04, Recitation, Section A15213-S04, Recitation, Section A

Thread Memory Model Thread Interfaces (System Calls) Thread Safety (Pitfalls of Using Thread) Racing Semaphore

Final & Evaluation Forms

– 2 – 15-213, S’04

pthread_createpthread_joinpthread_selfpthread_cancelpthread_exitpthread_mutex_initpthread_mutex_[un]lockpthread_cond_initpthread_cond_[timed]wait

– 3 – 15-213, S’04

Why Do We Care About ThreadUseful for L7 Part II

A very important way to implement modern concurrent systems

What’s concurrency?

WebBrowser

WebServer

WebBrowser

WebBrowser

WebServer

WebServer

Proxy

– 4 – 15-213, S’04

Three Methods to Implement Concurrency1. Processes

Fork a child process for every incoming client connection Difficult to share data among child processes

2. Threads Create a thread to handle every incoming client connection Our focus today

3. I/O multiplexing with Unix select() Use select() to notice pending socket activity Manually interleave the processing of multiple open

connections More complex!

~ implementing your own app-specific thread package!

– 5 – 15-213, S’04

View of ProcessProcess = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context: Data registers Condition code Stack pointer (SP) Program counter (PC)Kernel context: VM structures Descriptor table

Code, data, and stack

read-only code/data

stackSP

PC

Process context

– 6 – 15-213, S’04

View of ThreadMultiple threads can be associated with a process

Each thread has its own logical control flow (instruction flow) Each thread has its own thread ID (TID) Each thread shares the same code, data, and kernel context

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/dataThread 1 context: Data registers Condition code SP1 PC1

stack 1

Thread 1 (main thread)

Kernel context: VM structures Descriptor table

Thread 2 context: Data registers Condition code SP2 PC2

stack 2

Thread 2 (peer thread)

Thread memorymodel

– 7 – 15-213, S’04

Posix Threads (Pthreads) InterfaceStandard interface for ~60 functions

Creating and reaping threads.pthread_createpthread_join

Determining your thread IDpthread_self

Terminating threadspthread_cancelpthread_exit

Synchronizing access to shared variablespthread_mutex_initpthread_mutex_[un]lockpthread_cond_initpthread_cond_[timed]wait

– 8 – 15-213, S’04

The Pthread "hello, world" Program

/* * hello.c - Pthreads "hello, world" program */#include "csapp.h"

/* thread routine */void *thread(void *vargp) { printf("Hello, world!\n"); return NULL;}

int main() { pthread_t tid;

Pthread_create(&tid, NULL, thread, NULL); Pthread_join(tid, NULL); exit(0);}

– 9 – 15-213, S’04

Execution of Threaded“hello, world”main thread

main thread waits for peer

thread to terminate

exit() terminates

main thread and any peer threads

peer thread

Call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()return NULL;(peer threadterminates)

Pthread_create() returns

– 10 – 15-213, S’04

PracticesBasic usage of thread

Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

– 11 – 15-213, S’04

pthread_exit() & exit()

void *thread(void *vargp){ pthread_exit((void*)42);}

int main(){ int i; pthread_t tid; pthread_create(&tid, NULL, thread, NULL); pthread_join(tid, (void **)&i);

printf("%d\n",i);}

Program 1.1

– 12 – 15-213, S’04

pthread_exit() & exit()Program 1.2

void *thread(void *vargp){ exit(42);}

int main(){ int i; pthread_t tid; pthread_create(&tid, NULL, thread, NULL); pthread_join(tid, (void **)&i);

printf("%d\n",i);}

– 13 – 15-213, S’04

pthread_exit() & exit()pthread_exit() only terminates the current thread, NOT

the process

Exit() terminates all the threads in the process, i.e., the process itself

– 14 – 15-213, S’04

PracticesBasic usage of thread

Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

– 15 – 15-213, S’04

Joinable & Detached ThreadsAt any point in time, a thread is either joinable or

detached.

Joinable thread can be reaped and killed by other threads. must be reaped (with pthread_join) to free memory

resources.

Detached thread cannot be reaped or killed by other threads. resources are automatically reaped on termination.

Default state is joinable. use pthread_detach(pthread_self()) to make detached.

– 16 – 15-213, S’04

PracticesBasic usage of thread

Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

– 17 – 15-213, S’04

Protecting shared variablesProgram 1.5

int i = 42;

void *thread(void *vargp){ printf("%d\n",i); }

void *thread2(void *vargp){ i = 31; }

int main(){ pthread_t tid, tid2; pthread_create(&tid2, NULL, thread2, (void*)&i);

pthread_create(&tid, NULL, thread, (void*)&i); pthread_join(tid, (void**)&i); pthread_join(tid2, NULL);}

– 18 – 15-213, S’04

PracticesBasic usage of thread

Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

– 19 – 15-213, S’04

Functions that return a pointer to a static value

int main () {struct in_addr a, b;a.s_addr = inet_addr(“1.1.1.1”);b.s_addr = inet_addr(“2.2.2.2”);

printf(“%s %s\n”, inet_ntoa(a),inet_ntoa(b));

}

output: ???

int main () {struct in_addr a;a.s_addr = inet_addr(“1.1.1.1”);printf(“%s\n”, inet_ntoa(a));

}

Output: 1.1.1.1

– 20 – 15-213, S’04

Thread SafetyClass 1: Functions that do not protect shared variables

Class 2: Functions that keep state across multiple invocations rand() Textbook P. 886

Class 3: Functions that return a pointer to a static variable

Class 4: Functions that call thread-unsafe functions May or may not be thread-unsafe Textbook P.887

– 21 – 15-213, S’04

More Practice ProblemsProgram 1.3 & 1.4 are left for your practice

– 22 – 15-213, S’04

Racing

A race occurs when the correctness of a program depends on one thread reaching point x in its control flow before another thread reaches point y. Generally related with the access to the shared variables Need synchronization

Ways to do synchronization: Semaphores Mutual-exclusion

– 23 – 15-213, S’04

Program 2.b

void *foo(void *vargp) { int id; id = *((int *)vargp); printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

for (i = 0; i < 2; i++) Pthread_create(&tid[i], NULL, foo, &i); Pthread_join(tid[0], NULL); Pthread_join(tid[1], NULL);}

Racing!

– 24 – 15-213, S’04

Program 2.avoid *foo(void *vargp) { int myid; myid = *((int *)vargp); Free(vargp); printf("Thread %d\n", myid);}

int main() { pthread_t tid[2]; int i, *ptr;

for (i = 0; i < 2; i++) { ptr = Malloc(sizeof(int)); *ptr = i; Pthread_create(&tid[i], 0, foo, ptr); } Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Good!

– 25 – 15-213, S’04

Program 2.c

void *foo(void *vargp) { int id; id = (int)vargp; printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

for (i = 0; i < 2; i++) Pthread_create(&tid[i], 0, foo, i); Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Good!

– 26 – 15-213, S’04

The general solution for racingSemaphore & mutual-exclusion

Mutex is a special case for the problems that semaphore targets to solve, and thus can be implemented using semaphore

But mutex seems to be more popularly used (probably because more people understand it)

Classic solution: Dijkstra's P and V operations on semaphores. semaphore: non-negative integer synchronization variable.

P(s): [ while (s == 0) wait(); s--; ] V(s): [ s++; ]

OS guarantees that operations between brackets [ ] are executed indivisibly.

Only one P or V operation at a time can modify s. When while loop in P terminates, only that P can decrements.

Semaphore invariant: (s >= 0)

– 27 – 15-213, S’04

Program 2.dsem_t s; /* semaphore s */

void *foo(void *vargp) { int id; id = *((int *)vargp); V(&s); printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

sem_init(&s, 0, 0); /* S=0 INITIALLY */

for (i = 0; i < 2; i++) { Pthread_create(&tid[i], 0, foo, &i); P(&s); } Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Good!

– 28 – 15-213, S’04

Program 2.esem_t s; /* semaphore s */

void *foo(void *vargp) { int id; P(&s); id = *((int *)vargp); V(&s); printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

sem_init(&s, 0, 1); /* S=1 INITIALLY */

for (i = 0; i < 2; i++) { Pthread_create(&tid[i], 0, foo, &i); } Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Racing!

– 29 – 15-213, S’04

Summary So FarThread

Thread memory model How to write thread programs Thread safety (pitfalls of using thread)

Racing Semaphore

– 30 – 15-213, S’04

FinalTimes

Exam Time: May 3rd (Monday) 5:30pm – 8:30p UC McConomy

Review Session: May 1st (Saturday), 3:00pm

– 31 – 15-213, S’04

Evaluation FormsThere are questions on both sides

One student bring them to WH 5101

Recommended