31
Thread Thread 15213-S04, Recitation, Section A 15213-S04, Recitation, Section A Thread Memory Model Thread Interfaces (System Calls) Thread Safety (Pitfalls of Using Thread) Racing Semaphore Final & Evaluation Forms

Thread 15213-S04, Recitation, Section A

Embed Size (px)

DESCRIPTION

Thread 15213-S04, Recitation, Section A. Thread Memory Model Thread Interfaces (System Calls) Thread Safety (Pitfalls of Using Thread) Racing Semaphore Final & Evaluation Forms. pthread_create pthread_join pthread_self pthread_cancel pthread_exit pthread_mutex_init - PowerPoint PPT Presentation

Citation preview

Page 1: Thread 15213-S04, Recitation, Section A

ThreadThread15213-S04, Recitation, Section A15213-S04, Recitation, Section A

Thread Memory Model Thread Interfaces (System Calls) Thread Safety (Pitfalls of Using Thread) Racing Semaphore

Final & Evaluation Forms

Page 2: Thread 15213-S04, Recitation, Section A

– 2 – 15-213, S’04

pthread_createpthread_joinpthread_selfpthread_cancelpthread_exitpthread_mutex_initpthread_mutex_[un]lockpthread_cond_initpthread_cond_[timed]wait

Page 3: Thread 15213-S04, Recitation, Section A

– 3 – 15-213, S’04

Why Do We Care About Thread

Useful for L7 Part II

A very important way to implement modern concurrent systems

What’s concurrency?

WebBrowser

WebServer

WebBrowser

WebBrowser

WebServer

WebServer

Proxy

Page 4: Thread 15213-S04, Recitation, Section A

– 4 – 15-213, S’04

Three Methods to Implement Concurrency

1. Processes Fork a child process for every incoming client connection Difficult to share data among child processes

2. Threads Create a thread to handle every incoming client connection Our focus today

3. I/O multiplexing with Unix select() Use select() to notice pending socket activity Manually interleave the processing of multiple open

connections More complex!

~ implementing your own app-specific thread package!

Page 5: Thread 15213-S04, Recitation, Section A

– 5 – 15-213, S’04

View of Process

Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context: Data registers Condition code Stack pointer (SP) Program counter (PC)Kernel context: VM structures Descriptor table

Code, data, and stack

read-only code/data

stackSP

PC

Process context

Page 6: Thread 15213-S04, Recitation, Section A

– 6 – 15-213, S’04

View of Thread

Multiple threads can be associated with a process Each thread has its own logical control flow (instruction flow) Each thread has its own thread ID (TID) Each thread shares the same code, data, and kernel context

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/dataThread 1 context: Data registers Condition code SP1 PC1

stack 1

Thread 1 (main thread)

Kernel context: VM structures Descriptor table

Thread 2 context: Data registers Condition code SP2 PC2

stack 2

Thread 2 (peer thread)

Thread memorymodel

Page 7: Thread 15213-S04, Recitation, Section A

– 7 – 15-213, S’04

Posix Threads (Pthreads) Interface

Standard interface for ~60 functions Creating and reaping threads.

pthread_createpthread_join

Determining your thread IDpthread_self

Terminating threadspthread_cancelpthread_exit

Synchronizing access to shared variablespthread_mutex_initpthread_mutex_[un]lockpthread_cond_initpthread_cond_[timed]wait

Page 8: Thread 15213-S04, Recitation, Section A

– 8 – 15-213, S’04

The Pthread "hello, world" Program

/* * hello.c - Pthreads "hello, world" program */#include "csapp.h"

/* thread routine */void *thread(void *vargp) { printf("Hello, world!\n"); return NULL;}

int main() { pthread_t tid;

Pthread_create(&tid, NULL, thread, NULL); Pthread_join(tid, NULL); exit(0);}

Page 9: Thread 15213-S04, Recitation, Section A

– 9 – 15-213, S’04

Execution of Threaded“hello, world”

main thread

main thread waits for peer

thread to terminate

exit() terminates

main thread and any peer threads

peer thread

Call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

return NULL;(peer threadterminates)

Pthread_create() returns

Page 10: Thread 15213-S04, Recitation, Section A

– 10 – 15-213, S’04

Practices

Basic usage of thread Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

Page 11: Thread 15213-S04, Recitation, Section A

– 11 – 15-213, S’04

pthread_exit() & exit()

void *thread(void *vargp){ pthread_exit((void*)42);}

int main(){ int i; pthread_t tid; pthread_create(&tid, NULL, thread, NULL); pthread_join(tid, (void **)&i);

printf("%d\n",i);}

Program 1.1

Page 12: Thread 15213-S04, Recitation, Section A

– 12 – 15-213, S’04

pthread_exit() & exit()

Program 1.2

void *thread(void *vargp){ exit(42);}

int main(){ int i; pthread_t tid; pthread_create(&tid, NULL, thread, NULL); pthread_join(tid, (void **)&i);

printf("%d\n",i);}

Page 13: Thread 15213-S04, Recitation, Section A

– 13 – 15-213, S’04

pthread_exit() & exit()

pthread_exit() only terminates the current thread, NOT the process

Exit() terminates all the threads in the process, i.e., the process itself

Page 14: Thread 15213-S04, Recitation, Section A

– 14 – 15-213, S’04

Practices

Basic usage of thread Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

Page 15: Thread 15213-S04, Recitation, Section A

– 15 – 15-213, S’04

Joinable & Detached Threads

At any point in time, a thread is either joinable or detached.

Joinable thread can be reaped and killed by other threads. must be reaped (with pthread_join) to free memory

resources.

Detached thread cannot be reaped or killed by other threads. resources are automatically reaped on termination.

Default state is joinable. use pthread_detach(pthread_self()) to make detached.

Page 16: Thread 15213-S04, Recitation, Section A

– 16 – 15-213, S’04

Practices

Basic usage of thread Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

Page 17: Thread 15213-S04, Recitation, Section A

– 17 – 15-213, S’04

Protecting shared variables

Program 1.5int i = 42;

void *thread(void *vargp){ printf("%d\n",i); }

void *thread2(void *vargp){ i = 31; }

int main(){ pthread_t tid, tid2; pthread_create(&tid2, NULL, thread2, (void*)&i);

pthread_create(&tid, NULL, thread, (void*)&i); pthread_join(tid, (void**)&i); pthread_join(tid2, NULL);}

Page 18: Thread 15213-S04, Recitation, Section A

– 18 – 15-213, S’04

Practices

Basic usage of thread Pthread_exit() & exit() Joinable and detached thread

Thread safety Protecting shared variable Function that returns a static pointer (more) ……

Page 19: Thread 15213-S04, Recitation, Section A

– 19 – 15-213, S’04

Functions that return a pointer to a static value

int main () {struct in_addr a, b;a.s_addr = inet_addr(“1.1.1.1”);b.s_addr = inet_addr(“2.2.2.2”);

printf(“%s %s\n”, inet_ntoa(a),inet_ntoa(b));

}

output: ???

int main () {struct in_addr a;a.s_addr = inet_addr(“1.1.1.1”);printf(“%s\n”, inet_ntoa(a));

}

Output: 1.1.1.1

Page 20: Thread 15213-S04, Recitation, Section A

– 20 – 15-213, S’04

Thread Safety

Class 1: Functions that do not protect shared variables

Class 2: Functions that keep state across multiple invocations rand() Textbook P. 886

Class 3: Functions that return a pointer to a static variable

Class 4: Functions that call thread-unsafe functions May or may not be thread-unsafe Textbook P.887

Page 21: Thread 15213-S04, Recitation, Section A

– 21 – 15-213, S’04

More Practice Problems

Program 1.3 & 1.4 are left for your practice

Page 22: Thread 15213-S04, Recitation, Section A

– 22 – 15-213, S’04

Racing

A race occurs when the correctness of a program depends on one thread reaching point x in its control flow before another thread reaches point y. Generally related with the access to the shared variables Need synchronization

Ways to do synchronization: Semaphores Mutual-exclusion

Page 23: Thread 15213-S04, Recitation, Section A

– 23 – 15-213, S’04

Program 2.b

void *foo(void *vargp) { int id; id = *((int *)vargp); printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

for (i = 0; i < 2; i++) Pthread_create(&tid[i], NULL, foo, &i); Pthread_join(tid[0], NULL); Pthread_join(tid[1], NULL);}

Racing!

Page 24: Thread 15213-S04, Recitation, Section A

– 24 – 15-213, S’04

Program 2.avoid *foo(void *vargp) { int myid; myid = *((int *)vargp); Free(vargp); printf("Thread %d\n", myid);}

int main() { pthread_t tid[2]; int i, *ptr;

for (i = 0; i < 2; i++) { ptr = Malloc(sizeof(int)); *ptr = i; Pthread_create(&tid[i], 0, foo, ptr); } Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Good!

Page 25: Thread 15213-S04, Recitation, Section A

– 25 – 15-213, S’04

Program 2.c

void *foo(void *vargp) { int id; id = (int)vargp; printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

for (i = 0; i < 2; i++) Pthread_create(&tid[i], 0, foo, i); Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Good!

Page 26: Thread 15213-S04, Recitation, Section A

– 26 – 15-213, S’04

The general solution for racing

Semaphore & mutual-exclusion Mutex is a special case for the problems that semaphore targets to

solve, and thus can be implemented using semaphore But mutex seems to be more popularly used (probably because

more people understand it)

Classic solution: Dijkstra's P and V operations on semaphores. semaphore: non-negative integer synchronization variable.

P(s): [ while (s == 0) wait(); s--; ] V(s): [ s++; ]

OS guarantees that operations between brackets [ ] are executed indivisibly.

Only one P or V operation at a time can modify s. When while loop in P terminates, only that P can decrements.

Semaphore invariant: (s >= 0)

Page 27: Thread 15213-S04, Recitation, Section A

– 27 – 15-213, S’04

Program 2.dsem_t s; /* semaphore s */

void *foo(void *vargp) { int id; id = *((int *)vargp); V(&s); printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

sem_init(&s, 0, 0); /* S=0 INITIALLY */

for (i = 0; i < 2; i++) { Pthread_create(&tid[i], 0, foo, &i); P(&s); } Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Good!

Page 28: Thread 15213-S04, Recitation, Section A

– 28 – 15-213, S’04

Program 2.esem_t s; /* semaphore s */

void *foo(void *vargp) { int id; P(&s); id = *((int *)vargp); V(&s); printf("Thread %d\n", id);}

int main() { pthread_t tid[2]; int i;

sem_init(&s, 0, 1); /* S=1 INITIALLY */

for (i = 0; i < 2; i++) { Pthread_create(&tid[i], 0, foo, &i); } Pthread_join(tid[0], 0); Pthread_join(tid[1], 0);}

Racing!

Page 29: Thread 15213-S04, Recitation, Section A

– 29 – 15-213, S’04

Summary So Far

Thread Thread memory model How to write thread programs Thread safety (pitfalls of using thread)

Racing Semaphore

Page 30: Thread 15213-S04, Recitation, Section A

– 30 – 15-213, S’04

Final

Times

Exam Time: May 3rd (Monday) 5:30pm – 8:30p UC McConomy

Review Session: May 1st (Saturday), 3:00pm

Page 31: Thread 15213-S04, Recitation, Section A

– 31 – 15-213, S’04

Evaluation Forms

There are questions on both sides

One student bring them to WH 5101