The Least-Cost Path to a 100% Renewable Electricity Sector in the Faroe Islands · 2019-06-05 ·...

Preview:

Citation preview

The Least-Cost Path to a 100% Renewable Electricity Sector in the

Faroe Islands 4th International Hybrid Power Systems Workshop

Helma Maria Tróndheim Industrial Ph.D. student

Outline

• Background

• The Faroese Power System

• Energy demand

• Renewable resource potential

• Energy mixture optimisation

• The optimal energy mixture

• Conclusion and future work

Background

SEV’s vision • 2014 • 100% renewable electricity sector by 2030

Government • 2015 • 100% renewable electricity sector by 2030 • Electrification of heating (50% by 2025) • Electrification of transport

The path to a 100% renewable electricity sector

The Faroese power system

The grids • Main grid (~90%) • Suðuroy (~10%) • Other grids (<0.2%)

Existing power plants Diesel (66 MW) Hydro (41 MW) Wind (18 MW) Battery System (2.3 MW/0.7 MWh)

-202468

10

Pow

er [M

W]

10 minutes

Wind farmBattery systemStabilised output

Production in 2018 (350 GWh) • Diesel: 51% • Hydro: 31% • Wind: 18%

‘New’ technologies (2019-2020)

Biogas plant (1.5 MW) Solar plant (0.25 MW) Tidal demonstration project (0.2 MW)

Normal demand

Heating

Transport

Renewable Energy

100%

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Energy demand 2017-2030

0

50

100

150

200

250

300

350

400

450

500

550

600 En

ergy

(GW

h)

Average wind speed 10 m/s

Average sun hours 1000 h/year

Peak tidal stream 3.5 m/s

Average precipitation 1300 mm/year

Renewable resource potential

Renewable resource potential – Monthly

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec -

20

60

100

160

200

40

80

120

180

140

[mm

] [hr

s]

0

2

4

8

14

6

10

12

m/s

Average precipitation [mm] Average wind speed [m/s] Average sun hours [h] Average tidal stream [m/s]

Optimising the energy mixture

Minimise • Investment costs • Fixed O&M costs • Variable O&M costs

010203040506070

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

CO

2 em

issi

on

[kto

nne/

year

]

Investment options: Wind Solar Tidal Pumped storage Battery Cable

Optimisiation model, Balmorel • Investments (annually) • Dispatch (hourly) • 2019-2030

Constraints • Demand • Resources • CO2 emission

Heygadalur (107m a.s.l.) 2.1 mio. m3

Mýrarnar (240m a.s.l.) 4.1 mio. m3

Pumped storage option 1 – Main grid

Miðvatn (350m a.s.l.) 615.000 m3

Ryskivatn (245m a.s.l.) 415.000 m3

Vatnsnesvatn (180 m a.s.l.) 825.000 m3

Pumped storage option 2 – Suðuroy

The optimal capacities

0

2

4

6

8

10

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Transmission capacity [MW]

0

100

200

300

400

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Diesel Hydro Wind Solar Biogas Battery

0

2000

4000

6000

8000

0

20

40

60

80

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Turbine [MW] Pumps [MW] Storage [MWh]

The optimal annual generation

0%

20%

40%

60%

80%

100%

120%

0

100

200

300

400

500

600

700

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Prod

uctio

n [G

Wh]

Diesel Hydro Wind Solar Biogas Battery Renewable

Conclusion and future work

• Optimal energy mixture has been defined • Obtaining more realistic results

• Continuing developing the model • Additional technical constraints • More data input (more investment options)

• Analysing the stability of the proposed energy mixture

Co-authors: Terji Nielsen, The Power Company SEV Bárður A. Niclasen, The University of the Faroe Islands Claus Leth Bak, Aalborg University Filipe Faria Da Silva, Aalborg University

Thank you

Helma Maria Tróndheim, Industrial Ph.D. Student M.Sc. Energy Technology, B.Sc. Energy and Environmental Engineering

Recommended