Strong Coupling Q C D

Preview:

DESCRIPTION

Michael Pennington Jefferson Lab. ECT*, Trento September 2014. Strong Coupling Q C D. d. u. u. Michael Pennington Jefferson Lab. ECT*, Trento September 2014. Strong Coupling Q C D. Fritzsch. Gell-Mann. q ( i D - m ) q. =. q. Leutwyler. QCD. q=u,d,s, c,b,t. 1. - PowerPoint PPT Presentation

Citation preview

Strong Coupling QCDStrong Coupling QCD

ECT*, TrentoSeptember 2014

ECT*, TrentoSeptember 2014

Michael PenningtonJefferson Lab

Michael PenningtonJefferson Lab

Strong Coupling QCDStrong Coupling QCD

ECT*, TrentoSeptember 2014

ECT*, TrentoSeptember 2014

Michael PenningtonJefferson Lab

Michael PenningtonJefferson Lab

u

u

d

QCD

FritzschFritzsch

Gell-MannGell-Mann

LeutwylerLeutwyler

q ( i D - m ) q

- F F

q

14

=QCD q=u,d,s,

c,b,t

QCD

pQCD

confinementasymptotic freedom

strong QCDstrong QCD

0

1

0 10-15

r (m)

strong coupling

strong couplingstrong couplingpQCDpQCD

Strong physics problems

d

u

u

s

u_

strong couplingstrong couplingpQCDpQCD

Strong physics problems

strong couplingstrong couplingpQCDpQCD

Strong physics problems

Schwinger-Dyson Equations

-1-1-

-1 -1

-

mass function

wavefunctionrenormalisation

Fermion propagator

-1 -1

-

Gauge variant quantities: only physical quantities are gauge independent

mass function

wavefunctionrenormalisation

Fermion propagator

QCD

Schwinger-Dyson Equations

M

V

Bound State Equations

QCD

Schwinger-Dyson Equations

M

V

Bound State Equations

dressed quark propagator

QCD

Schwinger-Dyson Equations

M

V

Bound State Equations

dressed quark propagator

qq scattering kernel

QCD

Schwinger-Dyson Equations

P

V

f , m

Bound State Equations

SDE/BSE – ANL/KSU

pion/vectormesons

qq

Pq q

q q= +5 - -

qq

qqV = +

--

MV (GeV)

MP (GeV2)2

v

p2 GeV2

effective interaction strength

Maris & Tandy

10-3 103

p2 GeV2

Qin, Chang, Liu, Roberts, Wilson

effective interaction strength

10-3 103

q

q q

qq

q q

electromagnetic formfactors

Can Maris-Tandy (or Qin et al. ) modelling

be deduced from the SDE/DSEs?

q

q

Maris-Tandy model

V

q

q

q ( i D - m ) q - F F q=QCD q=u,d,s,

c,b,t

14

q

qq

Schwinger-Dyson Equations

2 equations

2 equations

12 equations

QEDQEDSchwinger-Dyson Equations

q

k p

pk k p=

-1 -1q

Ball & Chiu

Ward – Green –Takahashi Gauge Invariance

pk k p=

-1 -1q

Ball & Chiu

Ward – Green –Takahashi Gauge Invariance

q

k p

pk k p=

-1 -1q

Ward – Green –Takahashi Gauge Invariance

q

k p

1,2,..,8

q 0

-1 -1

-

mass function

wavefunctionrenormalisation

Fermion propagator

how to regularize: d4k dnk

QEDQEDSchwinger-Dyson Equations

k2, q2 >> p2

k2, p2 >> q2

Gauge Invariance & Multiplicative Renormalizibility

Kizilersu & P

Unquenched Massless renormalised at: =0.2, : varying Kizilersu et al

Unquenched Massless renormalised at: =0.2, : varying Kizilersu et al

. . . .

Consistent truncation

Gauge Invariance &Multiplicative Renormalizibility

QED

(i) remove divergences (eg. quadratic div.)(ii) ensure correct gauge dependence (eg. transversality of boson)

Schwinger-Dyson Equations

Consistent Solutions ofConsistent Solutions of QCD

q ( i D - m ) q q=QCD q=u,d,s,

c,b,t

- F F 14

axial gauges

Schwinger-Dyson Equations

QCD

(q) orthogonal to q

and n - the axial vector

Baker, Ball & Zachariasen

axial gauges BBZ

Schwinger-Dyson Equations

QCD

(q) orthogonal to q

and n - the axial vector

Slavnov-Taylor Identity

Richardson Potential

b

b_

heavy quark potential spectrum

bb

0.1 nm

positronium

V(r)

r

V(r)

r

g

g

e+

e-

1 fm

bottomonium

b

b_

b

b

1 fm

bottomonium

b

b_

b

b

gluon propagatorinterquark potential

rp ~ 1

r >> 1, p << 1

Coulomb : OBE

r << 1, p >> 1

rp ~ 1

r >> 1, p << 1

Coulomb : OBE

r << 1, p >> 1

Richardson Potential

interquark potential

axial gauges

Schwinger-Dyson Equations

QCD

(q) orthogonal to q

and n - the axial vector

G1(q2, n.q), G2(q2, n.q)

axial gauges

QCD

(q) orthogonal to q

and n - the axial vector

G1(q2, n.q), G2(q2, n.q)

Baker, Ball & Zachariasen

G2(q2, n.q) = 0G1(q2, n.q) ~ 1/q2

ie ~ 1/q4

Schwinger-Dyson Equations

axial gauges

QCD

(q) orthogonal to q

and n - the axial vector

Baker, Ball & Zachariasen

West showed axial gauge could NOT be more singular than 1/q2

G1(q2, n.q), G2(q2, n.q)

G2(q2, n.q) = 0G1(q2, n.q) ~ 1/q2

ie ~ 1/q4

Schwinger-Dyson Equations

(q)

covariant gauges

QCD

Schwinger-Dyson Equations

(q)

covariant gauges

(q) = T + qq

q2q2

Gl (q)

T (q) = gqq

q2-

D (q) = q2

Gh(q) QCD

Schwinger-Dyson Equations

first just gluons Pagels, Mandelstam, Bar-Gadda

Gl (q)

Studies in covariant gauges

first just gluons Pagels, Mandelstam, Bar-Gadda

Gl (q)

STIGl

~ 1/q4 possible

Studies in covariant gauges

(q)

covariant gauges

(q) = T + qq

q2q2

Gl (q)

T (q) = gqq

q2-

D (q) = q2

Gh(q)

=g

i

Slavnov-Taylor Identity

Schwinger-Dyson Equations

(q)

Landau gauge

(q) = T + qq

q2q2

Gl (q)

T (q) = gqq

q2-

D (q) = q2

Gh(q)

Slavnov-Taylor Identity

Brown & P (1988) Gh = 1

Schwinger-Dyson Equations

Brown & P1988

Gl (q)

Studies in the Landau gauge

q2 (GeV2)

Gl

R(q

)

Brown & P1988

Gl (q)

Nf = 2

s = 0.25

q2 (GeV2)

Gl

R(q

)

Nf = 2

s = 0.25

q2 (GeV2)

Gl

R(q

)

Studies in the Landau gauge

Richardson Potential

b

b_

heavy quark potential spectrum

Schwinger-Dyson Equations

Schwinger-Dyson Equations

von Smekal, Alkofer et al: ghosts are essentialghosts are essential

Landau gauge studiesLandau gauge studies

(k) = Gl (k) T(k) / k2

Gl (k) Gl (q) V(k,q,p)

q

k

(q) = Gl (q) T(q) / q2

Landau gauge studiesLandau gauge studies

(k) = Gl (k) T(k) / k2

Gl (k) Gl (q) V(k,q,p)

q

k

(q) = Gl (q) T(q) / q2

Model 1: V ~ 1

Tübingen, Graz, DarmstadtTübingen, Graz, Darmstadt

Gluon

Ghost

20 2 0.02 0.2distance (fm)

FischerDeep Infrared

scaling solution

Ghost

Gluon A(p)

Gluon B(p)

p2

Ghost

Gluon A(p)

Gluon B(p)

p2

Ghost

Gluon A(p)

Gluon B(p)

p2

Ghost

Gluon A(p)

Gluon B(p)

p2 von Smekal, Lerche

Schwinger-Dyson Equations

Schwinger-Dyson Equations

loss of symmetry

engineering to maintain scaling solution: V ~ Gh/Gl

Lattice QCD

p/a (GeV)

a2 D

(p2 )

V = 1284

Lattice Results: Cucchieri, Mendes

gluon

ghost

Bogolubsky et al. 2009Bogolubsky et al. 2009

p2

p2

Oliveira & Silva

p2 GeV2

Papavassiliou, BinosiBoucaud et al

Rodriguez Quintero

“massive”Solution of Gluon & Ghost SDEs

Tübingen, Graz, DarmstadtTübingen, Graz, Darmstadt

Gluon

Ghost

20 2 0.02 0.2distance (fm)

FischerDeep Infrared

scaling solution

p2 GeV2

Papavassiliou, BinosiBoucaud et al

Rodriguez Quintero

Wilson & P

“massive”Solution of Gluon & Ghost SDEs

V(k,q,p)

Model 1: V ~ 1

Model 2: V ~ Gh/ Gl

p

k

q

Gl (k)

Gl (q)

p

k

q

= bare vertex

Wilson & P

p

k

q

= bare vertex

p

k

q

= bare vertex

m2 + p2 [ 1 + ln( )]11 Nc g2

12 4p2 + m2

2

13

22

p2=Gl (p2)

Aguilar, Binosi, Papavassiliou

Wilson & P

m2 ~ 0.1 GeV2

q

k

p

To reproduce lattice results: ghost-gluon vertex has to have important non-Taylor terms

Coupled ghost equation

= ig fabc ( k – q FIR(k,p,q))k.q

q2

FIR 0, when k 0

p2 GeV2

“massive”Solution of Gluon & Ghost SDEs

Running coupling

Taylor coupling

Aguilar coupling

(GeV2)

Schwinger-Dyson Equations

Schwinger-Dyson Equations

Bloch

Meyers & Swanson

Adding quartic interactions

q ( i D - m ) q - F F q=QCD q=u,d,s,

c,b,t

14

QCDAdding quartic interactions

m02 AA

+

QCD ?Meyers & Swanson

ghost

sunset

squint

Consistent Solutions ofConsistent Solutions of QCD

q ( i D - m ) q q=QCD q=u,d,s,

c,b,t

- F F 14

Truncation respects: Gauge invariance Multiplicative Renormalizability

Can Maris-Tandy (or Qin et al. ) modelling

be deduced from the SDE/DSEs?

q

q

Maris-Tandy model

V

q

q

q ( i D - m ) q - F F q=QCD q=u,d,s,

c,b,t

14

q

qq

Recommended