Stock Optimisation

Preview:

DESCRIPTION

Stock Optimisation

Citation preview

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 1/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 194Source: Financial Models Using Simulation and Optimization by Wayne Winston

CHAPTER 16:

PORTFOLIO OPTIMIZATION USING SOLVER

PROBLEM DEFINITION:

Given a set of investments (for example stocks) how do we find a portfolio thathas the lowest risk (i.e. lowest volatility or lowest variance) and yields an

acceptable expected return? 

•  Harry Markowitz solved the above problem in 1950’s. For this work and

other investment topics he received the Nobel Prize in Economics in 1991.

•  Ideas discussed in this session are the basis for most methods of asset

allocation used by Wall Street firms.

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 2/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 195Source: Financial Models Using Simulation and Optimization by Wayne Winston

WEIGTHED SUM OF RANDOM VARIABLES

•  A fixed number of N investments (or Stocks) are available.

•  iS  : Random return during a calendar year on a dollar invested in investment

I, where i=1, …, N.

Examples:

•  0.10i s   = , dollar invested at the beginning of the years is worth $1.10 at the

end of the year

•  0.20i s   = − , dollar invested at the beginning of the years is worth $0.80 at the

end of the year

Definition:

•  i x : the fraction of one dollar that is invested in investment i. Note that:

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 3/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 196Source: Financial Models Using Simulation and Optimization by Wayne Winston

,11 =∑=

 N 

ii x   N i xi   ,,1,0   =≥  

•   R : be the random annual return on our investments. Then

∑=

∗=n

i

ii   S  x R1

 

Note that:

•  Because the returns on our investments   iS  are random the annual return  R  

on our portfolio of investments, defined by ( ) N S S    ,,1 and the specified

weights ( ) N  x x   ,,1 is random as well. 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 4/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 197Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  The expected (or average) annual return for R can be calculated as: 

][][1

∑=

∗=n

i

ii   S  E  x R E  

WHY?

•  We know that if X is a random variable, a and b are constants and Y=a*X+bthat:

E[Y]=E[a*X+b]= a*E[X]+b

•  We know that if X and Y are random variables and Z=X+Y that: 

E[Z]=E[X+Y]=E[X]+E[Y]

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 5/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 198Source: Financial Models Using Simulation and Optimization by Wayne Winston

WHAT ABOUT THE UNCERTAINTY IN OUR ANNUAL RETURN R?

(or What about the variance of our Annual Return R?)

•  We know that if  the returns on the investments iS  are independent random

variables that

][)(][

1

2∑=

∗=n

i

ii   S VAR x RVAR 

WHY?

• 

•  We know that if X is a random variable, a and b are constants and Y=a*X+b

that:

VAR[Y]=VAR[a*X+b]= a2*VAR[X]

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 6/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 199Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  We know that if X and Y are independent random variables and Z=X+Y that: 

VAR[Z]=VAR[X+Y]=VAR[X]+VAR[Y]

BUT?

Can we reasonably say that the annual return iS   

are independent random variables?

Answer: NO! 

•  We know that if the market (e.g. Dow Jones Index) is in an upward trend,

that all stocks have a better chance of doing well.

•  We know that if the market (e.g. Dow Jones Index) is in a downward trend,

that all stocks have a higher chance of doing worse.

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 7/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 200Source: Financial Models Using Simulation and Optimization by Wayne Winston

SO WHAT IS THE CORRECT FORMULA FOR THE VARIANCE OF THE

 ANNUAL RETURN R WHEN THE INVESTMENTS ARE DEPENDENT?

INTERMEZZO: COVARIANCE

Let X, Y be two random variables.

•  If X and Y are independent there is no relationship between X and Y, and:

VAR(X+Y)=VAR(X) +VAR(Y)

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 8/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 201Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  If X and Y are positively dependent large values of X tend to be associated

with large values of Y

•  If X and Y are positively dependent small values of X tend to be associated

with small values of Y

•  If X and Y are negatively dependent large values of X tend to be associated

with small values of Y

•  If X and Y are negatively dependent small values of X tend to be associated

with large values of Y.

WHAT IS THE SIMPLEST RELATIONSHIP

THAT YOU THINK OF BETWEEN X AND Y? ANSWER: A Linear Relationship! 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 9/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 202Source: Financial Models Using Simulation and Optimization by Wayne Winston

Let X,Y be two random variables such that: Y=a*X+b

Y=a*X+b, a>0

X

Y

Large Values of X tend to be

associated with Large Values of Y

Small Values of X tend to be

associated with Small Values of Y

POSITIVE DEPENDENCE

Y=a*X+b, a<0

X

Y

Large Values of X tend to be

associated with Small Values of Y

Small Values of X tend to be

associated with Small Values of Y

NEGATIVE DEPENDENCE

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 10/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 203Source: Financial Models Using Simulation and Optimization by Wayne Winston

CAN WE THINK OF A MEASURE IN THE SAME LINE OF THINKING AS E[X] 

 AND VAR[X] THAT “MEASURES” POSITIVE DEPENDENCE OR NEGATIVE

DEPENDENCE? WHAT ABOUT : COV(X,Y) = E[(Y-E[Y])(X-E[X])] 

E[X]

E[Y]

E[(Y-E[Y])(x-E[X])]

(-,-)= +

(+,+)= +

(+,-)= -

(-,+)= -

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 11/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 204Source: Financial Models Using Simulation and Optimization by Wayne Winston

CONCLUSION :

•  Covariance is positive when there are more (+,+) points and (-,-) points then

(+,-) points and (-,+) points.

•  Covariance is negative when there are more (+,-) points and (-,+) points then

(+,+) points and (-,-) points.

THEREFORE:

Covariance is a measure of positive dependence or negative dependence.

If Y=a*X+b, what is the relationship between COV(X,Y)and the slope of the line a?

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 12/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 205Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  E[Y]=a*E[X]+b

•  Y-E[Y]= a*X+b- a*E[X]-b=a*(X-E[X)

•  Cov(X,Y)=E[(Y-E[Y])(X-E[X])] =

E[a*(X-E[X])(X-E[X])] = a

a*E[(X-E[X])(X-E[X])] = a*Var[X]

or

( , )

( )

COV X Y a

VAR X =

 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 13/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 206Source: Financial Models Using Simulation and Optimization by Wayne Winston

Y=a*X+b, a>0

X

Y

Y=a*X+b, a>0

X

Y

^ ^

a =COV(X,Y)

VAR(X)

a =COV(X,Y)

VAR(X)

=

^^

^

∑=

−−−

n

i

ii   x x x xn   1

))((1

1

∑=

−−−

n

i

ii   x x y yn   1

))((1

1

PERFECT LINEAR RELATIONSHIP IMPERFECT LINEAR RELATIONSHIP

Best FitThrough

Linear

Regression

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 14/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 207Source: Financial Models Using Simulation and Optimization by Wayne Winston

CONCLUSION:

•  If you have a set of points ),( ii   y x , i=1,…,n you can estimate positive

dependence or negative dependence by calculating COV(X,Y).

•  If you have a set of points ),( ii   y x , i=1,…,n you can estimate the slope of the

“linear relationship” by calculating a .

HOW CAN WE DISTINGUISH BETWEEN A PERFECT LINEAR

RELATIONSHIP AND AN IMPERFECT LINEAR RELATIONSHIP

GIVEN THE SET OF POINTS ),( ii   y x  i=1,…,n?

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 15/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 208Source: Financial Models Using Simulation and Optimization by Wayne Winston

Let X,Y be two random variables such that

Y=a*X+b,

•  Cov(X,Y)= a*Var[X]

•  Var[Y]= a2*Var[X]

CORRELATION BETWEEN

TWO RANDOM VARIABLES

1)(**)(

)(*)(*)(

),(),(2

±=== X Var a X Var 

 X Var aY Var  X Var 

Y  X CovY  X Cor  

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 16/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 209Source: Financial Models Using Simulation and Optimization by Wayne Winston

Y=a*X+b, a>0

X

Y

Y=a*X+b, a>0

X

Y

^ ^

a =COV(X,Y)

VAR(X)

a =COV(X,Y)

VAR(X)

^^

^

PERFECT LINEAR RELATIONSHIP IMPERFECT LINEAR RELATIONSHIP

Best FitThrough

Linear

Regression

COR(X,Y) = 1

,VAR(Y)>^,VAR(Y)>^ a2 VAR(X)^

a2 VAR(X)^

COR(X,Y) = < 1^ COV(X,Y)

VAR(X)

^

^*VAR(Y)

^

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 17/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 210Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  If X and Y are dependent random variables

VAR(X+Y) = VAR(X) + VAR(Y) + 2*COV(X,Y)

CONCLUSION :

•  If X,Y are positive dependent variables the level of variation of X+Y is

amplified by the dependency.

•  If X,Y are negative dependent variables the level of variation of X+Y is

reduced by the dependency (the random variables tend to “cancel each

other out”).

BACK TO OUR ORIGINAL PROBLEM

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 18/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 211Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  iS  : Random returns during a calendar year on a dollar invested in

investment I, where i=1, …, N.

•  Random returns iS  are dependent random variables

•  i x : the fraction of one dollar that is invested in investment i. Note that:

•   R  be the random annual return on our investments. Then

∑= ∗=

n

iii   S  x R 1  

1

1, N 

i

i

 x=

=∑   0, 1, ,i x i N ≥ =  

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 19/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 212Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  The expected (or average) annual return for R can be calculated as: 

][][1

∑=

∗=n

i

ii   S  E  x R E  

•  The variance of the annual return for R can be calculated as: 

∑ ∑∑= ≠==

+∗=n

i

n

i j j

 ji ji

n

i

ii   S S Cov x xS Var  x RVar 

1 ,11

2),(][][

 

or

2

1 1 1,

[ ] [ ] ( , ) [ ] [ ]n n n

i i i j i j i j

i i j j i

Var R x Var S x x Cor S S Var S Var S  

= = = ≠

= ∗ +∑ ∑ ∑ 

EQUATIONS LOOK COMPLICATED!

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 20/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 213Source: Financial Models Using Simulation and Optimization by Wayne Winston

INTERMEZZO: MATRIX - VECTOR MULTIPLICATION 

M N matrix:

 

 

 

 

=

nm N  M  M 

 N  M 

 N 

aaa

a

aa

aaa

 A

,1,1,

,1

2,21,2

,12,11,1

 M rows, N Columns

N-Vector (or N 1 matrix) :

 

 

 

 

=

 N  x

 x

 x   1

 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 21/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 214Source: Financial Models Using Simulation and Optimization by Wayne Winston

Matrix-Vector Product:

 

 

 

 

=

 

 

 

 

 

 

 

 

=

=

=

=

 j

 N 

 j

 j M 

 j

 N 

 j

 j

 j

 N 

 j

 j

 N 

nm N  M  M 

 N  M 

 N 

 xa

 xa

 xa

 x

 x

aaa

a

aa

aaa

 x A

1

,

1

,2

1

,1

1

,1,1,

,1

2,21,2

,12,11,1

 

(M N-Matrix)*(N-vector) =M-Vector

(M N-Matrix)*(N 1-Matrix) =M 1-Matrix

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 22/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 215Source: Financial Models Using Simulation and Optimization by Wayne Winston

EXAMPLE :

 

  

 =

 

  

 

++

++=

 

 

 

 

 

  

 

36

20

4*53*42*2

4*33*22*1

4

3

2

542

321

 

VECTOR - MATRIX MULTIPLICATION

M N matrix:

 

 

 

 

=

nm N  M  M 

 N  M 

 N 

aaa

a

aa

aaa

 A

,1,1,

,1

2,21,2

,12,11,1

 M rows, N Columns

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 23/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 216Source: Financial Models Using Simulation and Optimization by Wayne Winston

TRANSPOSED M-Vector (or M 

1 matrix) :

( ) M 

T  x x x   1=  

Vector - Matrix Product:

( )   =

 

 

 

 

=

nm N  M  M 

 N  M 

 N 

 M 

aaa

a

aa

aaa

 x x A x

,1,1,

,1

2,21,2

,12,11,1

1

 

 

  

 =   ∑∑∑

=== N  j

 N 

 j

 j

 N 

 j

 j j

 N 

 j

 j j   a xa xa x ,

11

2,

1

1,    

(Transposed M –Vector)*(M N-Matrix) =N-Vector

(1 M-Matrix)*(M N-Matrix) =1 N-Matrix

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 24/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 217Source: Financial Models Using Simulation and Optimization by Wayne Winston

EXAMPLE :

( )   = 

 

 

 

542

321

54  

( ) =+++   5*53*44*52*42*51*4  

( )372814

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 25/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 218Source: Financial Models Using Simulation and Optimization by Wayne Winston

MATRIX – MATRIX MULTIPLICATION: (M 

N-Matrix)*(N 

P-Matrix) =M 

P-Matrix

1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2,1 2,2

1, 1,

,1 , 1 , ,1 , 1 ,

 N P 

 N N P 

 M M N M N N N P N P 

a a a b b b

a a b b AB

a b

a a a b b b

− −

− −

=

 

1, ,1 1, ,2 1, ,

1 1 1

2, ,1 2, ,2

1 1

1, ,

1

, ,1 , , 1 , ,

1 1 1

 N N N 

 j j j j j j P 

 j j j

 N N 

 j j j j

 j j

 N 

 j j P 

 j N N N 

 j j M j j P M j j P 

 j j j

a b a b a b

a b a b

a b

a b a b a b

= = =

= =

=

−= = =

=

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 26/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 219Source: Financial Models Using Simulation and Optimization by Wayne Winston

EXAMPLE:

=

 

 

 

 

 

 

 

 

65

43

21

542

321

 

 

 

 

 =

 

 

 

 

++++

++++

5039

2822

6*54*42*25*53*41*2

6*34*22*15*33*21*1

 

NOTE THAT:

(M N-Matrix)*(N P-Matrix) =M P-Matrix

EMSE 388 Q tit ti M th d i C t E i i

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 27/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 220Source: Financial Models Using Simulation and Optimization by Wayne Winston

BACK TO OUR ORIGINAL PROBLEM:

2

1 1 1,

[ ] [ ] ( , ) [ ] [ ]n n n

i i i j i j i j

i i j j i

Var R x Var S x x Cor S S Var S Var S  = = = ≠

= ∗ +∑ ∑ ∑ 

HOWEVER INTRODUCING WEIGHT VECTOR:

 

 

 

 

=

 N  x

 x

 x  

1

 

 AND TRANSPOSE OF WEIGHT VECTOR;

( )n

 N 

T  x x

 x

 x

 x     1

1

=

 

 

 

 =

 

EMSE 388 Quantitative Methods in Cost Engineering

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 28/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 221Source: Financial Models Using Simulation and Optimization by Wayne Winston

 AND VARIANCE – COVARIANCE MATRIX:

 

 

 

 

=

),(),(),(

),(

),(),(

),(),(),(

11

1

2212

12111

 N  N  N  N  N 

 N  N 

 N 

S S CovS S CovS S Cov

S S Cov

S S CovS S Cov

S S CovS S CovS S Cov

 

 AND REALIZING THAT: COV(Si,Si)=VAR(Si)

HOMEWORK: SHOW THAT ABOVE ASSERTION IS CORRECT!

2

1

[ ] [ ]n

i i

i

Var R x Var S  =

= ∗ +∑

1 1,

( , ) [ ] [ ]n n

i j i j i ji j j i

 x x Cor S S Var S Var S x x= = ≠

+ =

∑ ∑ ∑

EMSE 388 Quantitative Methods in Cost Engineering

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 29/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 222Source: Financial Models Using Simulation and Optimization by Wayne Winston

PROBLEM DEFINITION:

Given a set of investments (for example stocks) how do we find a portfolio that

has the lowest risk (i.e. lowest volatility or lowest variance) and yields an

acceptable expected return? 

•  iS  : Random return during a calendar year on a dollar invested in investment

I, where i=1, …, N.

•  i x : the fraction of one dollar that is invested in investment i. Note that:

1

1, N 

i

i

 x=

=∑   0, 1, ,i x i N ≥ =  

EMSE 388 – Quantitative Methods in Cost Engineering

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 30/35

EMSE 388 Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 223Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  The expected (or average) annual return for R can be calculated as: 

)(][][1

 x g S  E  x R E n

i

ii   =∗= ∑=

 

•  The variance of the annual return for R can be calculated as: 

)(][   x f   x x RVar   T 

==   ∑  

OPTIMIZATION PROBLEM:

Minimize : )( x f    

Subject to: %)(   r  x g   ≥

 

0, 1, ,i x i N ≥ =   1

1 N 

i

i

 x=

=∑

EMSE 388 – Quantitative Methods in Cost Engineering

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 31/35

EMSE 388 Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 224Source: Financial Models Using Simulation and Optimization by Wayne Winston

WHAT TYPE OF OPTIMIZATION PROBLEM IS THIS?

•  Variance – Covariance Matrix ∑ is known to be positive definite.

•  Objective function is a multidimensional quadratic function. Hessian Matrix of

∑ x xT 

 is: ∑  

•  Conclusion: Objective Function is Convex

•  Constraint function %)(   r  x g    −  linear function (and thus convex)

•  Constraint function 11

=∑=

 N 

i

i x  can be rewritten as:

1,1

11

≤≥   ∑∑==

 N 

i

i

 N 

i

i   x x

 

both of which are linear function ( and thus convex).

EMSE 388 – Quantitative Methods in Cost Engineering 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 32/35

g g

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 225Source: Financial Models Using Simulation and Optimization by Wayne Winston

CONCLUSION: OPTIMIZATION PROBLEM IS CONVEX OPTIMIZATION

PROBLEM AND HAS A UNIQUE GLOBAL OPTIMUM.

EXAMPLE:

EMSE 388 – Quantitative Methods in Cost Engineering 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 33/35

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 226Source: Financial Models Using Simulation and Optimization by Wayne Winston

AFTER OPTIMIZATION

EMSE 388 – Quantitative Methods in Cost Engineering 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 34/35

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 227Source: Financial Models Using Simulation and Optimization by Wayne Winston

SUPPOSE WE INCREASE THE REQUIRED EXPECTED RETURN, WHAT

HAPPENS TO THE STANDARD DEVIATION OF THE PORTFOLIO?

Required Return Stock 1 Stock 2 Stock 3 Port stdev Exp return

0.100 0 0 1 0.0800 0.100

0.105 1/8 0 7/8 0.0832 0.105

0.110 1/4 0 3/4 0.0922 0.110

0.115 3/8 0 5/8 0.1055 0.1150.120 1/2 0 1/2 0.1217 0.120

0.125 5/8 0 3/8 0.1397 0.125

0.130 3/4 0 1/4 0.1591 0.130

0.135 7/8 0 1/8 0.1792 0.135

0.140 1 0 0 0.2000 0.140

EMSE 388 – Quantitative Methods in Cost Engineering 

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 35/35

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 228Source: Financial Models Using Simulation and Optimization by Wayne Winston

THE EFFICIENT FRONTIER

Efficient Frontier (Risk Versus Expected Return)

0.0500

0.1000

0.1500

0.2000

0.050 0.100 0.150 0.200

Expected Return

   S   t  a  n   d

  a  r   d

   D  e  v   i  a   t   i  o

  n

Recommended