(SMJE2053;2014/2015 2) Week 12nozomu.minibird.jp/wp-content/uploads/2016/02/Week12-ch16ch18_l… ·...

Preview:

Citation preview

Chapter 16:

Discrete-Time Fourier Transform

Chapter 18:

System Function, the Frequency

Response

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display .

Scope SMJE2053:

Ch.16, 16.1~4, 16.6, Problems16.14: Questions 1., 6.a., 12.a. b.

Ch.18, 18.1~4, 16.6, Problems18.13: Questions 20.(Mod.), 21.a.

Week 12

(SMJE2053;2014/2015_2)

Signal Transform Family

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

Signals

Continuous-time

Discrete-time

non-periodic

Fourier Transform

Discrete-time Fourier Transform

(DTFT)

finite,

periodic

Fourier Series

Discrete Fourier Transform

(DFT), FFT*

System/

Control

Laplace transform

X(s)

z-transform

X(z)

*: FFT is a fast algorithm of DFT

( ) j n

n

X x n e

DTFT

16.1 Definition

The DTFT is a complex function and can be

represented by its magnitude and phase

Magnitude Phase πœƒ πœ” = βˆ π‘‹(πœ”)

13-4

DTFT is Periodic DTFT 𝑋(πœ”) is periodic with period 2Ο€ because

𝑋(πœ”) is specified by

𝑋 πœ” βˆ’ πœ‹ ≀ πœ” < πœ‹

(When the DTFT is expressed in terms of f

(πœ” = 2πœ‹π‘“), the period of f is 1 Hz and

𝑋 𝑓 = 𝑋(πœ”)πœ”=2πœ‹π‘“

may be specified for βˆ’0.5 < 𝑓 < 0.5

13-5

IDTFT, The Inverse of DTFT

The inverse of the DTFT may be found from

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

16.2 Examples of DTFT

Example 16.1a. Find the DTFT of the unit-

sample signal x(n)=d(n)

Solution: 𝑋 πœ” = 1

Example 16.1b. Find the DTFT and plot its

magnitude given

π‘₯ 𝑛 = 1

2,

0,

𝑛 = βˆ’1,1π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’

Solution:

𝑋 πœ” =1

2π‘’π‘—πœ” +

1

2π‘’βˆ’π‘—πœ” = cosπœ”

13-7

𝑋 πœ” = cosπœ”

π‘₯(𝑛)

βˆ’πœ‹ 0 πœ‹ πœ”

Example 16.1b.

12-8 Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

Quiz 1 Find the DTFT given

π‘₯ 𝑛 = 0.5𝑑 𝑛 + 1 + 𝑑 𝑛 + 0.5𝑑 𝑛 βˆ’ 1

𝑋 πœ” = 1 + cosπœ”

βˆ’πœ‹ 0 πœ‹

πœ”

Examples (Cont.)

Example 16.3a. Find the DTFT and its

magnitude and phase of 𝒙 𝒏 = 𝒂𝒏𝒖(𝒏)

Solution:

𝑋 πœ” = π‘Žπ‘›π‘’βˆ’π‘—πœ”π‘›

∞

𝑛=0

= π‘Žπ‘’βˆ’π‘—πœ”π‘›

∞

𝑛=0

=1

1 βˆ’ π‘Žπ‘’βˆ’π‘—πœ”=

1

1 βˆ’ π‘Ž cosπœ” + π‘—π‘Ž sinπœ”

𝑋(πœ”) =1

(1 βˆ’ π‘Ž cosπœ”)2+(π‘Ž sinπœ”)2

πœƒ πœ” = βˆ’π‘‘π‘Žπ‘›βˆ’1π‘Ž sinπœ”

1 βˆ’ π‘Ž cosπœ”

Magnitude:

Phase:

13-10

j

1

1 0.8e

Ο‰

Ο‰

Example 𝛼 = 0.8

13-11

16.3 The DTFT and the z-Transform

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

DTFT:

z-transform:

13-12

Magnitude response 1

1X(z)

1 0.8z

z-transform of π‘₯ 𝑛 = 0.8 𝑛𝑒(𝑛)

DTFT

(magnitude)

13-13

Phase response

1

1X(z)

1 0.8z

z-transform of π‘₯ 𝑛 = 0.8 𝑛𝑒(𝑛)

DTFT (phase)

16.4 Inverse DTFT (IDTFT) Example

Example 16.8. Find the inverse DTFT of

Solution.

13-15 Figure 16.3. X(Ο‰) (upper) and x(n) (lower).

βˆ’πœ‹ 0 πœ‹

𝑋(πœ”)

π‘₯(𝑛)

13-16

16.6 Properties of DTFT

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

Linearity:

Time shift:

π‘Žπ‘₯ 𝑛 + 𝑏𝑦 𝑛

π‘₯ 𝑛 βˆ’ π‘˜

π‘Žπ‘‹ πœ” + π‘π‘Œ πœ”

π‘’βˆ’π‘—π‘˜πœ”π‘‹ πœ”

Convolution: π‘₯ 𝑛 βˆ— 𝑦 𝑛 𝑋 πœ” βˆ™ π‘Œ πœ”

π‘₯(𝑛)

∞

𝑛=βˆ’βˆž

= 𝑋(0) Zero frequency

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

Quiz 2

Find the DTFT of given signal

π‘₯ 𝑛 = 𝑑 𝑛 βˆ’ 5 + 𝑑(𝑛 + 5)

13-18

1. Find the DTFT of

π‘₯ 𝑛 = 1,0,

𝑛 = βˆ’1,0,1π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’

and plot its amplitude for βˆ’πœ‹ ≀ πœ” < πœ‹

16.14 Problems

6. a.

Find the DTFT of

π‘₯ 𝑛 = 1,0,

𝑛 = 0,1π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’

12. a. b.

Find the DTFT of π‘₯ 𝑛 = 𝛼𝑛𝑒(𝑛) and plot its magnitude

for

a. 𝛼 = 0.95 , b. 𝛼 = 0.5

13-19

Chapter 18:

System Function, the Frequency Response

β„Ž(𝑛) π‘₯(𝑛) 𝑦(𝑛)

β–  Besides of unit-sample response h(n)

System function and Frequency Response

are also specify the LTI system

LTI system

13-20

18.1 The System Function H(z)

Fact 1: H(z) is the z-transform of unit-sample

response h(n)

Fact 2: H(z) is the ratio Y(z)/X(z)

Fact 3: H(z) is found from the Difference

Equation and vice versa.

13-21 21

Fact 1: H(z) is the z-transform of unit-sample

response h(n)

Example 18.1A

The unit-sample response of an LTI system is

β„Ž 𝑛 = π‘Žπ‘›π‘’(𝑛). Find its system function

Solution

System Function

𝐻 𝑧 =1

1βˆ’π‘Žπ‘§βˆ’1

β„Ž 𝑛 = π‘Žπ‘›π‘’(𝑛)

13-22

Example 18.3 Find the system function of the LTI system with the

given input-output pair.

π‘₯ 𝑛 = 1, 1, 1 , y 𝑛 = 1, 3, 4, 3, 1

Solution : In the z-domain the input-output pair is

𝑋 𝑧 = 1 + π‘§βˆ’1 + π‘§βˆ’2 ,

π‘Œ 𝑧 = 1 + 3π‘§βˆ’1 + 4π‘§βˆ’2 + 3π‘§βˆ’3 + π‘§βˆ’4

By long division we obtain the system function

𝐻 𝑧 =π‘Œ(𝑧)

𝑋(𝑧)=

1 + 3π‘§βˆ’1 + 4π‘§βˆ’2 + 3π‘§βˆ’3 + π‘§βˆ’4

1 + π‘§βˆ’1 + π‘§βˆ’2

= 1 + 2π‘§βˆ’1 + π‘§βˆ’2

Fact 2: H(z) is the ratio Y(z)/X(z)

13-23

Example 18.5A An LTI system is described by the input-output difference

equation

𝑦 𝑛 = βˆ’0.3𝑦 𝑛 βˆ’ 1 βˆ’ 0.4𝑦 𝑛 βˆ’ 2 + π‘₯(𝑛) Find the system function

Solution

By transforming both sides of the difference equation above

π‘Œ 𝑧 = βˆ’0.3π‘§βˆ’1π‘Œ(𝑧) βˆ’ 0.4π‘§βˆ’2π‘Œ(𝑧) + 𝑋(𝑧) 1 + 0.3π‘§βˆ’1 + 0.4π‘§βˆ’2 π‘Œ 𝑧 = 𝑋 𝑧

Therefore, the system function is given by

𝐻 𝑧 =1

1 + 0.3π‘§βˆ’1 + 0.4π‘§βˆ’2

Fact 3: H(z) is found from the Difference

Equation and vice versa.

13-24

Example 18.6 (modified)

Find the input-output difference equation of an LTI system

with the system function

𝐻 𝑧 =π‘Œ(𝑧)

𝑋(𝑧)=

1 βˆ’ 0.3π‘§βˆ’1

1 βˆ’ 0.7π‘§βˆ’1 + 0.2π‘§βˆ’2

Solution

1 βˆ’ 0.7π‘§βˆ’1 + 0.2π‘§βˆ’2 π‘Œ 𝑧 = (1 βˆ’ 0.3π‘§βˆ’1)𝑋 𝑧

π‘Œ 𝑧 = 0.7π‘§βˆ’1π‘Œ 𝑧 βˆ’ 0.2π‘§βˆ’2π‘Œ 𝑧 + 𝑋 𝑧 βˆ’ 0.3π‘§βˆ’1𝑋(𝑧) Thus, we have 𝑦 𝑛 = 0.7𝑦 𝑛 βˆ’ 1 βˆ’ 0.2𝑦 𝑛 βˆ’ 2 + π‘₯ 𝑛 βˆ’ 0.3π‘₯(𝑛 βˆ’ 1)

13-25 Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

Quiz 3

An LTI system is described by the input-output

difference equation

𝑦 𝑛 = βˆ’π‘¦ 𝑛 βˆ’ 1 + π‘₯ 𝑛 βˆ’ π‘₯(𝑛 βˆ’ 1) Find the system function

Solution

By transforming both sides of the difference equation above

π‘Œ 𝑧 = βˆ’π‘§βˆ’1π‘Œ 𝑧 + 𝑋 𝑧 βˆ’ π‘§βˆ’1𝑋(𝑧) 1 + π‘§βˆ’1 π‘Œ 𝑧 = (1 βˆ’ π‘§βˆ’1)𝑋 𝑧

Therefore, the system function is given by

𝐻 𝑧 =1 βˆ’ π‘§βˆ’1

1 + π‘§βˆ’1

13-26

18.2 Poles and Zeros

β€’ In this section the system function

represented by a function of π’›βˆ’πŸ is

converted into the equivalent system

with H(z)=B(z)/A(z), where A(z) and B(z)

are polynomials in z.

β€’ The roots of the numerator are called

zeros of the system.

β€’ The roots of the denominator are called

poles of the system.

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

13-27

Example 18.10 (modified)

Find the poles and zeros of the following system function.

a. 𝐻 𝑧 = 1 + π‘§βˆ’1 + π‘§βˆ’2

b. 𝐻 𝑧 =1βˆ’0.3π‘§βˆ’1

1βˆ’0.7π‘§βˆ’1+0.2π‘§βˆ’2

Solution

a. 𝐻 𝑧 =𝑧2+𝑧+1

𝑧2

Zeros of H(z): 𝑧2 + 𝑧 + 1=0 𝑧 =βˆ’1Β± 12βˆ’4Γ—1

2= βˆ’

1

2Β± 𝑗

3

2

Poles of H(z): 𝑧2 = 0 z=0 (double roots)

b. 𝐻 𝑧 =𝑧2βˆ’0.3𝑧

𝑧2βˆ’0.7𝑧+0.2

Zeros of H(z): 𝑧2 βˆ’ 0.3𝑧=0 z=0, 0.3

Poles of H(z): 𝑧2 βˆ’ 0.7𝑧 + 0.2=0 𝑧 =0.7Β± (βˆ’0.7)2βˆ’4Γ—0.2

2

= 0.35 Β± 𝑗0.28

13-28

Quiz 4

Find the poles and zeros of the following system function

𝐻 𝑧 =1 + 0.2π‘§βˆ’1

1 βˆ’ π‘§βˆ’1 + 0.5π‘§βˆ’2

13-29

18.3 The Frequency Response 𝑯(𝝎)

𝑯 𝝎 : frequency response of the system.

β–  DTFT of the unit-sample response h(n) of

the system,

β– It can be found from the system function H(z).

Definition

π‘₯ 𝑛 = π‘’π‘—πœ”π‘› 𝑦 𝑛 = 𝐻(πœ”)π‘’π‘—πœ”π‘›

LTI system

𝐻(πœ”)

13-30

Response for sinusoidal

Copyright Β© 2014 McGraw-Hill Education. Permission required for reproduction or display

LTI system

𝐻(πœ”)

cosπœ”π‘› 𝐻(πœ”) cos(πœ”π‘› + πœƒ)

13-31

Example The frequency response of an system with the system

function 𝐻 𝑧 =1

2+ π‘§βˆ’1 +

1

2π‘§βˆ’2 (β„Ž 𝑛 = {

1

2, 1,

1

2} )

is given by 𝐻 πœ” = π‘’βˆ’π‘—πœ”(1 + cosπœ”), where the

magnitude response: 𝐻(πœ”) = 1 + cosπœ”, ΞΈ πœ” = βˆ’πœ”.

Find the response of the system to the input

a. π‘₯ 𝑛 = 1

b. π‘₯ 𝑛 = cos(πœ‹

2𝑛)

c. π‘₯ 𝑛 = cos(πœ‹π‘›)

13-32

Solution For the input π‘₯ 𝑛 = cos(πœ”π‘›), the output of the system with magnitude

response of 𝐻(πœ”) and the phase response of πœƒ(πœ”) is given by

𝑦 𝑛 = 𝐻(πœ”) cos(πœ”π‘› + πœƒ(πœ”))

a. Here π‘₯ 𝑛 = 1 = cos 0 βˆ™ 𝑛, and 𝐻(0) = 1 + cos 0 = 2, ΞΈ 0 = 0,

𝑦 𝑛 = 𝐻(0) cos 0 βˆ™ 𝑛 + ΞΈ 0 = 2

b. From 𝐻(πœ‹

2) = 1 + cos

πœ‹

2= 1, πœƒ

πœ‹

2= βˆ’

πœ‹

2,

𝑦 𝑛 = 𝐻(πœ‹

2) cos

πœ‹

2𝑛 + ΞΈ

πœ‹

2= cos(

πœ‹

2𝑛 βˆ’

πœ‹

2) = sin(

πœ‹

2𝑛)

c. From 𝐻 πœ‹ = π‘’βˆ’π‘—πœ‹ 1 + cos πœ‹ = 0, 𝑦 𝑛 = 𝐻(πœ‹) cos πœ‹π‘› + ΞΈ πœ‹ = 0

13-33

20. (Modified in part)

a. Find the system function given the following difference

equation:

𝑦 𝑛 = 0.2𝑦 𝑛 βˆ’ 1 + π‘₯(𝑛) b. Find the magnitude and phase of the frequency response

for πœ” = πœ‹.

c. Find the output to the input π‘₯ 𝑛 = cos(πœ‹π‘›).

21. a.

The unit-sample response of a discrete-time system is

β„Ž 𝑛 = 1, 2, 1 . Find and plot 𝐻 πœ” over βˆ’πœ‹ ≀ πœ” < πœ‹

18.13 Problems

13-34

HOMEWORK (Due: 18/May/2015 13:00PM)

Hamada office 05.38.01 MJIIT Level 5

Chapter 16

Problem 6.a

Chapter 18

Problem 20. (Modified)