RICE David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002 R adio I ce C herenkov E xperiment PI...

Preview:

Citation preview

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICERadio Ice Cherenkov Experiment

PI

presenter

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICENeSS: 10 min + 2

• Concept

• Status

• Results (astro-ph/0206371)

• Future

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICERadio Detection of High Energy Neutrinos

Goals

PeV: AGN 1 km3

EeV: GZK 103 km3

Cherenkov radiation from induced in-ice shower

Signal ~ Q ~ 0.25 Es/GeV ~ RM ~ 10 cmTransparency > 1 kmThermal noise @ 250 k

.8 km

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEEeV neutrino detection with RICE

5 km

1-10 PeV 1-10 EeV _

Signal Strength Ice PropertiesCalibration LPM effecte e N recoil hadrons0s interact

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICE

• 16 Rx (10 cm dipole)• 5 Tx• 3 Horns• 4 Oscilliscopes (x4) • DAQ• PCs• Pulse Generator• Dry hole

Pole:

• Network analyzer• Antenna range

Kansas:

Deployment

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEChannel and DAQ configuration

Power

Scope

Trigger generator

Antenna

Amp in PV

cableAmpFilter

Splitter

PC• 4 hits within 1200 ns • Latch scope• TDC times to PC • On-line veto (TDC times)

• Read scope• Write to disk

• 8 sec• 1 ns sample• 500 MHz

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICESingle Channel Calibrations

200-500 MHz: +/- 3 dB (E)

TX….RX • antenna + amplifier calibrations• cable (TX, RX) and filter• relative geometry of TX/RX (r,

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEMonte Carlo Simulation

• Neutrino interaction

• e+/e-/ shower

• Radio pulse generation

• Propagation through ice

• Antenna & DAQ response

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEInteractions and Event types

• Interaction Model– isotropic flux from upper hemisphere (2sr)

– charged and neutral currents

– hadronic energy = y E, lepton energy = (1-y) E

– Gandhi et al. ’98 cross-sectiond/dy with ~20% reduction for Oxygen (EMC effect)

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEShower Simulations

• Shower simulation– GEANT 3.21 (100 GeV – 1 TeV)

30% smaller than ZHS (but …GEANT 4 ??)

– Extrapolate to higher energies

– LPM from Alvarez & Zas

– Hadronic cascades convert

completely to EM with no

LPM

– EM & hadronic cascades

treated separately

Average 100 GeV shower

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEEM Pulse generation

ALSO: Experimental results (Saltzberg, et al.) confirms coherence and Askaryan effect

1. Pulse increases with Energy2. Narrows with frequency3. Some small numerical

differences between codes

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICERadio Attenuation in Ice

Red – Westphal (Greenland) + Matsuoka (high freq)Black – Kawada(lab) + Matsuoka (high freq) (from Matsuoka)

0.1 0.2 0.5 1 2 5 10nHGHzL

0.0005

0.001

0.002

0.005

e''

temp = - 10

0.1 0.2 0.5 1 2 5 10nHGHzL0.0001

0.000150.00020.00030.00050.00070.001

0.00150.002

e''

temp = - 25

0.1 0.2 0.5 1 2 5 10nHGHzL0.00002

0.00005

0.0001

0.0002

0.0005

e''

temp = - 50

’ + i”

0.1 0.2 0.5 1 2 5 10nHGHzL

0.1

1

10

100

1000

lttaHmkL

lH- 60 CLx 100

lH- 50 CLx 10

lH- 40 CLx 1

Solid – Provorov (used by RICE)Dashed – Matsuoka + Westphal

RICE bandpass

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEPulse shape simulation

Disc. threshold

Background taken from data sample

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEResults of MC simulation

Limited by attenuation

60,000 e- showers at E = 1 EeVBlack dots – sampleRed dots – events which would trigger RICE

~ 5% efficiency

Limited by Cherenkov angle

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICE

1. 2. 3. 4. 5. 6.Log@EsDHPeVL- 3.

- 2.

- 1.

0.

1.

2.

goL@V ffeDHmk3 L

RICE effective volume for e-, showers

Range due to varyingsignal strength by 0.5-2

Range due to varyingattenuation by 0.5-2

Mul

tipl

y by

2

sr

This is appropriatefor e chargedcurrent events.

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICE

1. 2. 3. 4. 5. 6.Log@EsDHPeVL- 3.

- 2.

- 1.

0.

1.

2.

goL@V ffeDHmk3 L

LPM and hadronic showers

With LPMWithout LPM

“Hadronic”Es = 20% E

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEReconstruction of transmitter events

• t =50 ns for noise• t = ns for

• r = 10 m nearby• r = 0.1 R , < 1 km

• ~ 10 deg• E/E ~ 0.5

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEResults of Data Analysis

333.3 hrs livetime

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICELimits on diffuse e flux from e- showers

a) Stecker & Salamon (AGN)b) Protheroe (AGN)c) Mannheim (AGN)d) Protheroe & Stanev (TD)e) Engel, Seckel & Stanev (GZK)

Ranges are central 80%

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICELimits derived from e- showers (e CC)hadronic showers (all CC+NC)

a) Stecker & Salamon (AGN) d ) Protheroe & Stanev (TD)b) Protheroe (AGN) e) Engel, Seckel & Stanev (GZK)c) Mannheim (AGN)

Ranges are central 80%

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICENear term future

Beginning analysis of ~ 1 yr of data. Improve limits by ~ 10.

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICELonger term

100 GZK events/yr requires ~ 1000 km3 (1 Eg)

RICE: LPM no LPM

Auger: tau e, muLPM

LPM

Needs

SaltEUSO

ANITA

AMANDA/ANTARES

IceCube/NEMO

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICESummary

• Radio detection has a bright future• Demonstrated ability to reject surface backgrounds and work close to

thermal limit• Major uncertainty is

– attenuation in ice (high energy)– calibration (low energy)

• Veff (E > 1018eV) > 20 km3 sr [e CC only]• Limit improves by 2-18 with inclusion of hadronic channels,

depending on spectrum.• Limits may improve by 10 (again) with analysis of 1 yr data.• 100 GZK events per yr is conceivable

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICE

Intentionally left blank

End of Talk

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICEThermal Background

-4 -2 0 2 4

-4

-2

0

2

4

-0.8 -0.4 0.0 0.4 0.8

-0.8

-0.4

0.0

0.4

0.8

y (k

m)

x (km)

y (k

m)

x (km)

Red – Simulated detected showers (1 EeV)Black – Simulated noise – uncorrelated background

Warnings: shower vertices are “true” positions not reconstructed. Should be OK inside 1 km.shower vertices are monoenergetic.

David Seckel, NeSS02, Washington DC, Sept. 19-21,/2002

RICESystematic Effects (see astro-ph/0206371)

Recommended