Quantifying the sensitivity of the 1.5°C carbon budget ...2010 2000 1980 1890 1950 2050 RCP2.6...

Preview:

Citation preview

Quantifying the sensitivity of the 1.5°C carbon budget estimate

Nadine Mengis, A.-I. Partanen, J. Jalbert, H. D. Matthews

November, 16th 2017, 7th Ouranos Symposium, Montreal

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

What is the carbon budget for 1.5°C?

2

Introduction

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

IPCC AR5, SPM

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

What is the carbon budget for 1.5°C?

2

Introduction

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

What is the carbon budget for 1.5°C?

• cumulative historical emissions:555±55 Pg C(Global Carbon Project, 2016)

2

Introduction

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

What is the carbon budget for 1.5°C?

• cumulative historical emissions:555±55 Pg C(Global Carbon Project, 2016)

• effective TCRE from observations: 1.78°C / 1000 Pg C

2

Introduction

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

What is the carbon budget for 1.5°C?

• cumulative historical emissions:555±55 Pg C(Global Carbon Project, 2016)

• effective TCRE from observations: 1.78°C / 1000 Pg C

• carbon budget for a 1.5°C warming: 845 Pg C

2

Introduction

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

SPM

Summary for Policymakers

28

• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target (see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5}

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

51000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)

Tem

pera

ture

ano

mal

y re

lativ

e to

186

1–18

80 (°

C)

0 500 1000 1500 2000Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 HistoricalRCP4.5RCP6.0RCP8.5

RCP range1% yr

-1 CO2

1% yr -1 CO2 range

What is the carbon budget for 1.5°C?

• cumulative historical emissions:555±55 Pg C(Global Carbon Project, 2016)

• effective TCRE from observations: 1.78°C / 1000 Pg C

• carbon budget for a 1.5°C warming: 845 Pg C

2

Introduction

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

• ocean carbon uptake • simulated surface

temperature/circulation • biological pump

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

• ocean carbon uptake • simulated surface

temperature/circulation • biological pump

• land carbon uptake • CO2 fertilization • soil respiration • biodiversity

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 3

Introduction

Global carbon budget

The cumulative contributions to the global carbon budget from 1870

Figure concept from Shrink That FootprintSource: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;

Le Quéré et al 2016; Global Carbon Budget 2016

The concept of carbon budgets

• ocean carbon uptake • simulated surface

temperature/circulation • biological pump

• land carbon uptake • CO2 fertilization • soil respiration • biodiversity

How does the carbon cycle impact future allowable carbon emissions?

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

University of Victoria Earth System Climate Model

4

Methodology

AtmosphereSea Ice

Land

Sediment

Momentum /EnergyCarbon FluxWater

UVicESCM

MOSES & TRIFFID

Ocean Biogeochemistry & Ocean PhysicsMOM

EMBM

• Earth system model of intermediate complexity (EMIC)

• 1.8° x 3.6° horizontal resolution

• 15 vertical ocean levels

• 5 plant functional types

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

University of Victoria Earth System Climate Model

4

Methodology

AtmosphereSea Ice

Land

Sediment

Momentum /EnergyCarbon FluxWater

UVicESCM

MOSES & TRIFFID

Ocean Biogeochemistry & Ocean PhysicsMOM

EMBM

• Earth system model of intermediate complexity (EMIC)

• 1.8° x 3.6° horizontal resolution

• 15 vertical ocean levels

• 5 plant functional types

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Experimental design

• prescribe temperature and diagnose fossil fuel emissions

5

Methodology

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Experimental design

• prescribe temperature and diagnose fossil fuel emissions

• historical temperature + strict guardrail of 1.5°C in 2100

5

Methodology

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Experimental design

• prescribe temperature and diagnose fossil fuel emissions

• historical temperature + strict guardrail of 1.5°C in 2100

• no temperature overshoot

5

Methodology

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 2100 2150 2200

13

13.5

14

14.5

global mean air temperature

Experimental design

• prescribe temperature and diagnose fossil fuel emissions

• historical temperature + strict guardrail of 1.5°C in 2100

• no temperature overshoot

5

Methodology

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 2100 2150 2200

13

13.5

14

14.5

global mean air temperature

Experimental design

• prescribe temperature and diagnose fossil fuel emissions

• historical temperature + strict guardrail of 1.5°C in 2100

• no temperature overshoot

• historical + RCP2.6 forcing following CMIP5 protocol-> land-use change-> non-CO2 GHG -> aerosols-> volcanic, solar

5

Methodology

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Constraining the perturbed parameter ensemble

• Prior knowledge on the probability of simulations from observed carbon fluxes

6

Methodology

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Constraining the perturbed parameter ensemble

• Prior knowledge on the probability of simulations from observed carbon fluxes

• Simulations constrained by their ability to reproduce the observed budget in 2015

6

Methodology

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Constraining the perturbed parameter ensemble

• Prior knowledge on the probability of simulations from observed carbon fluxes

• Simulations constrained by their ability to reproduce the observed budget in 2015

6

Methodology

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300a

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

A priori weights for the PPEa

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

Posterior weights for the PPEb

0

0.01

0.02

0.03

0.04

0.05

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

1.5°C FF budget - probabilistic estimate

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

cumulative fossil fuel emissions from

observations: 413±21 PgC(1850-2015)

(Global Carbon Project, 2016)

1.5°C FF budget - probabilistic estimate

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

cumulative fossil fuel emissions from

observations: 413±21 PgC(1850-2015)

(Global Carbon Project, 2016)

1.5°C

1.5°C FF budget - probabilistic estimate

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

cumulative fossil fuel emissions from

observations: 413±21 PgC(1850-2015)

(Global Carbon Project, 2016)

best estimate for 1.5°C budget:

469 (411,528) PgC

1.5°C

1.5°C FF budget - probabilistic estimate

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

cumulative fossil fuel emissions from

observations: 413±21 PgC(1850-2015)

(Global Carbon Project, 2016)

best estimate for 1.5°C budget:

469 (411,528) PgC

1.5°C

1.5°C FF budget - probabilistic estimate

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

cumulative fossil fuel emissions from

observations: 413±21 PgC(1850-2015)

(Global Carbon Project, 2016)

best estimate for 1.5°C budget:

469 (411,528) PgC

1.5°C

best estimate for the remaining 1.5°C

budget: 56 (-2,115) PgC

1.5°C FF budget - probabilistic estimate

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

1850 1900 1950 2000 2050 21000

100

200

300

400

500a

cum

ulat

ive

FF e

mis

sion

s [P

g C

] b

pdf 2015pdf 1.5°Cobserved 2015best estimatedefault model

50 100 150 200 250 300

−100

−50

0

50

100

150

200

250

300 c

2015 ocean carbon uptake

2015

land

car

bon

upta

ke

1.5 Carbon Budget

best estimate

2 stds

413 Pg C

Pg C

300

350

400

450

500

550

600

7

Results - Part I

cumulative fossil fuel emissions from

observations: 413±21 PgC(1850-2015)

(Global Carbon Project, 2016)

best estimate for 1.5°C budget:

469 (411,528) PgC

1.5°C

best estimate for the remaining 1.5°C

budget: 56 (-2,115) PgC

1.5°C FF budget - probabilistic estimate

We cannot exclude the possibility, that we have already emitted all of the remaining fossil fuel

carbon budget for the 1.5°C target.

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

equivalent CO2 emissions:

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

equivalent CO2 emissions:

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

non-CO2 greenhouse gases

345 PgC

equivalent CO2 emissions:

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

non-CO2 greenhouse gases

345 PgC

equivalent CO2 emissions:

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

non-CO2 greenhouse gases

345 PgC

direct and indirect aerosols 182 PgC

equivalent CO2 emissions:

1850 - 2015

1850 - 2055

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca 8

Non-CO2 contributions to the 1.5°C budget

Results - Part II

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

fossil fuel emissions: 469 PgC

land-use change emissions: 228 PgC

non-CO2 greenhouse gases

345 PgC

direct and indirect aerosols 182 PgC

equivalent CO2 emissions:

1850 - 2015

1850 - 2055

The future development of LUC, non-CO2 GHG and aerosols has a substantial influence on the fossil

fuel carbon budget.

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 2100 2150 22000

50

100

150

200

250

300

350

400

450

500

550

Cum

ulat

ive

emis

sion

(Pg

C)

Year

Temperature stabilization carbon budget

9

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

13

13.5

14

14.5

global mean air temperature

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

1850 1900 1950 2000 2050 2100 2150 22000

50

100

150

200

250

300

350

400

450

500

550

Cum

ulat

ive

emis

sion

(Pg

C)

Year

Temperature stabilization carbon budget

9

Results - Part III

?

1850 1900 1950 2000 2050 2100 2150 2200

13

13.5

14

14.5

global mean air temperature

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

2015 1.5°C

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

2015 1.5°C stabilization

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

2015 1.5°C stabilization

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

2015 1.5°C stabilization

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

2015 1.5°C stabilization

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Non-CO2 contributions - Scenario uncertainty

10

Results - Part III

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−200 −100 1.5 CCB 100 200 300

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

451 Pg CLUC

sum nonCO2 GHGs

Aerosols

0 Pg C

2015

foss

il em

issi

ons

1900 1950 2000 2050 2100 2150

−200

0

200

400

600

800a

PgC

CO2 and equivalent CO2 emissions

1900 1950 2000 2050 2100 2150−4

−2

0

2

4

6

8

10b

time

PgC

yr−1

fossil CO2woCH4woN2OwoKyotowoMontrealwoOzonewoCH4oxsum nonCO2 GHGwoAerosolswoLUC

The sum of LUC, non-CO2 GHG and aerosols cause an

overall positive climate forcing.

2015 1.5°C stabilization

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Carbon cycle feedback

11

Results - Part III

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Carbon cycle feedback

11

Results - Part III

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Carbon cycle feedback

11

Results - Part III

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Carbon cycle feedback

11

Results - Part III

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Carbon cycle feedback

11

Results - Part III

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6aLand + Ocean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6bOcean carbon flux [Pg C / yr]

1900 1950 2000 2050 2100 2150−2

0

2

4

6cLand carbon flux [Pg C / yr]

Temperature stabilization requires negative CO2 emissions, to compensate 1) for the residual positive climate forcing and 2) for the carbon

released from the natural system.

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Conclusions• It is possible that we have

already emitted all of the remaining FF budget.

12

Conclusions

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Conclusions• It is possible that we have

already emitted all of the remaining FF budget.

12

Conclusions

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Conclusions• It is possible that we have

already emitted all of the remaining FF budget.

• Scenario uncertainty of LUC, non-CO2 GHG and aerosols strongly influence the remaining fossil fuel budget.

12

Conclusions

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Conclusions• It is possible that we have

already emitted all of the remaining FF budget.

• Scenario uncertainty of LUC, non-CO2 GHG and aerosols strongly influence the remaining fossil fuel budget.

12

Conclusions

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Conclusions• It is possible that we have

already emitted all of the remaining FF budget.

• Scenario uncertainty of LUC, non-CO2 GHG and aerosols strongly influence the remaining fossil fuel budget.

• Negative CO2 emissions would be needed for a temperature stabilization in the presence of residual climate forcing.

12

Conclusions

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Conclusions• It is possible that we have

already emitted all of the remaining FF budget.

• Scenario uncertainty of LUC, non-CO2 GHG and aerosols strongly influence the remaining fossil fuel budget.

• Negative CO2 emissions would be needed for a temperature stabilization in the presence of residual climate forcing.

12

Conclusions

1850 1900 1950 2000 2050 2100 2150 22000

50

100

150

200

250

300

350

400

450

500

550

Cum

ulat

ive

emis

sion

(Pg

C)

Year

!

1850 1900 1950 2000 2050 2100 2150 2200

−300

−200

−100

0

100

200

300

400

500a

cum

ulat

ive

[PgC

]

CO2 and equivalent CO2 emissions

−300 −200 −100 1.5 FF 100 200 300b

CH4N2O

Fluorinated GHGsMontreal GHGs

OzoneCH4ox

469 Pg C0 Pg CLUC

sum nonCO2 GHGs

Aerosols

FF emissions

Nadine Mengis, Concordia University, nadine.mengis@concordia.ca

Merci beaucoup

Results from:Mengis, N., A.-I. Partanen, J. Jalbert, and H. D. Matthews, „1.5°C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing“ (submitted to Nature Communications)

13

Recommended