Polytechnic University Convolutioneeweb.poly.edu/~yao/EE3054/ch9.6_9.8.pdf · Polytechnic...

Preview:

Citation preview

EE3054 Signals and Systems

Continuous Time Convolution

Yao WangPolytechnic University

Some slides included are extracted from lecture presentations prepared by McClellan and Schafer

3/14/2008 © 2003, JH McClellan & RW Schafer 2

License Info for SPFirst Slides

� This work released under a Creative Commons Licensewith the following terms:

� Attribution� The licensor permits others to copy, distribute, display, and perform

the work. In return, licensees must give the original authors credit.

� Non-Commercial� The licensor permits others to copy, distribute, display, and perform

the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

� Share Alike� The licensor permits others to distribute derivative works only under

a license identical to the one that governs the licensor's work.� Full Text of the License� This (hidden) page should be kept with the presentation

3/14/2008 © 2003, JH McClellan & RW Schafer 3

LECTURE OBJECTIVES

� Review of C-T LTI systems � Evaluating convolutions

� Examples� Impulses

� LTI Systems� Stability and causality� Cascade and parallel connections

3/14/2008 © 2003, JH McClellan & RW Schafer 4

Linear and Time-Invariant (LTI) Systems

� If a continuous-time system is both linear and time-invariant, then the output y(t) is related to the input x(t) by a convolution integralconvolution integral

where h(t) is the impulse responseimpulse response of the system.

∫∞

∞−

∗=−= )()()()()( thtxdthxty τττ

3/14/2008 © 2003, JH McClellan & RW Schafer 5

Evaluating a Convolution

∫∞

∞−

∗=−= )()()()()( txthdtxhty τττ

)()( tueth t−=)1()( −= tutx

3/14/2008 © 2003, JH McClellan & RW Schafer 6

“Flipping and Shifting”)(τx

g(τ ) = x(−τ ) = u(−τ −1)

g(τ − t) = x(−(τ − t)) = x(t −τ )

“flipping”

“flipping and shifting”

t1−t

3/14/2008 © 2003, JH McClellan & RW Schafer 7

Evaluating the Integral

>−

<−=

∫−

− 01

010)( 1

0

tde

tty t

ττ

3/14/2008 © 2003, JH McClellan & RW Schafer 8

Solution

1 0)( t<ty =

1 1

)(

)1(

1

0

1

0

≥−=

−==

−−

− −−−∫

te

edety

t

t tττ τ

3/14/2008 © 2003, JH McClellan & RW Schafer 9

Convolution GUI

3/14/2008 © 2003, JH McClellan & RW Schafer 10

Another Example

)(00

0

00

0)()(

)()()()()(

0)(

tuabee

t

tba

ee

t

tdeeedtueue

thtxdthxty

btatbtat

tbabt

tba

−−=

<

>+−

−=

<

>=−=

∗=−=

−−−−

−−∞

∞−

−−−

∞−

∫∫

ττττ

τττ

ττττ

)()( tuetx at−= abtueth bt ≠= − ),()(

3/14/2008 © 2003, JH McClellan & RW Schafer 11

Special Case: u(t)

)()1(1

)()()()()(

tuea

thtxdthxty

at−

∞−

−=

∗=−= ∫ τττ

0),()( ≠= − atuetx at )()( tuth =

)()1(21)(

2 if2 tuety

at−−=

=

3/14/2008 © 2003, JH McClellan & RW Schafer 12

Convolve Unit Steps

)(00

000

01)()(

)()()()()(

0

tutt

ttt

tddtuu

thtxdthxty

t

=

<

>=

<

>=−=

∗=−=

∫∫

∞−

∞−

ττττ

τττ

)()( tutx = )()( tuth =

Unit Ramp

3/14/2008 © 2003, JH McClellan & RW Schafer 13

“Flipping and Shifting”x(τ )

g(τ ) = x(−τ ) = u(−τ −1)

g(τ − t) = x(−(τ − t)) = x(t −τ )

“flipping”

“flipping and shifting”

t1−t

More examples

� Rectangular pulses

3/14/2008 © 2003, JH McClellan & RW Schafer 15

Another Convolution Example

y(t) = x(τ )h(t −τ )dτ = x(t) ∗ h(t)−∞

∞∫

h(t) = e− tu(t)

3/14/2008 © 2003, JH McClellan & RW Schafer 16

Evaluating the Integral

y(t) = 0 t <1

= e−(t−τ )dτ 1≤ t ≤ 21

t∫

= e−(t−τ )dτ 2 ≤ t1

2∫

3/14/2008 © 2003, JH McClellan & RW Schafer 17

Solution

y(t) = e−(t−τ )dτ = e−(t−τ )1

t=1-e−(t−1) 1≤ t ≤ 2

1

t∫

= e−(t−τ )dτ = e−(t−τ )1

2= e−(t−2) - e−(t−1) 2 ≤ t

1

2∫

y(t) = 0 t <1

3/14/2008 © 2003, JH McClellan & RW Schafer 18

Convolution GUI

3/14/2008 © 2003, JH McClellan & RW Schafer 19

Convolution with Impulses, etc.

� Convolution with impulses

� Convolution with step function = integrator

)()(*)( 11 ttxtttx −=−δ

3/14/2008 © 2003, JH McClellan & RW Schafer 20

Convolution is Commutative

∞−

∞−

∞−

∗=−=

−−=∗

−=−=

−=∗

)()()()(

)()()()(

and let

)()()()(

thtxdxth

dxthtxth

ddt

dtxhtxth

σσσ

σσσ

τστσ

τττ

3/14/2008 © 2003, JH McClellan & RW Schafer 21

Stability

� A system is stable if every bounded input produces a bounded output.

� A continuous-time LTI system is stable if and only if

h(t)dt < ∞−∞

∞∫

Integrator is unstable

3/14/2008 © 2003, JH McClellan & RW Schafer 23

Causal Systems

� A system is causal if and only if y(t0)depends only on x(τ) for τ< t0 .

� An LTI system is causal if and only if

0for 0)( <= tth

3/14/2008 © 2003, JH McClellan & RW Schafer 24

� Substitute x(t)=ax1(t)+bx2(t)

Therefore, convolution is linear.

)()(

)()()()(

)()]()([)(

21

21

21

tbytay

dthxbdthxa

dthbxaxty

+=

−+−=

−+=

∫ ∫

∫∞

∞−

∞−

∞−

ττττττ

ττττ

Convolution is Linear

3/14/2008 © 2003, JH McClellan & RW Schafer 25

Convolution is Time-Invariant

� Substitute x(t-t0)

w(t) = h(τ )x((t − τ ) −to)dτ−∞

= h(τ )x((t −to ) −τ )dτ−∞

= y(t − to )

3/14/2008 © 2003, JH McClellan & RW Schafer 26

Cascade of LTI Systems

δ(t) h1(t) h1(t) ∗ h2(t)

δ(t) h2 (t) h2 (t) ∗ h1(t)

h(t) = h1(t) ∗ h2 (t) = h2(t) ∗ h1(t)

3/14/2008 © 2003, JH McClellan & RW Schafer 27

Parallel LTI Systems

h(t) = h1(t) + h2(t)(t

δ(t)

h1(t)

h2 (t)

h1(t) + h2 (t)

Example: More complicated combinations

READING ASSIGNMENTS

� This Lecture:� Chapter 9, Sects. 9-6, 9-7, and 9-8

� Other Reading:� Ch. 9, all� Next Lecture: Start reading Chapter 10