Phased Array Technology Applied to Aeroacoustics11th AIAA/CEAS Aeroacoustics Conference (26th AIAA...

Preview:

Citation preview

Phased Array TechnologyApplied to Aeroacoustics

Bob DoughertyPresident, OptiNav, Inc.

15th AIAA/CEAS Aeroacoustics Conference(30th AIAA Aeroacoustics Conference)

13 May 2009Miami, Florida

• Problems• History• Beamforming algorithms• Airframe Noise• Fan Noise• Engine Noise• Jet Noise• Dipole Study from the OptiNav

Aeroacoustic Facility• Conclusions• Postscript (added after the presentation)

Outline

Flap side-edgenoise

Gearnoise

Slat edge noiseSlat gapnoise

Inlet noise:fan, lowpressurecompressor

Aft fan, turbine,combustor andjet noise

Problems:• Locate and isolate the sources• Understand them• Reduce them• Predict the results

History

The Telescope

Hans Lippershey 1608

also

Galileo Galilei 1609

source: Wikipedia

The Radio Telescope

source: WikipediaKarl Guthe Jansky 1931

Astronomical Interferometry

source: Wikipedia

Ryle, M. & Vonberg, D., 1946

VLA: inaugurated in 1980

The Acoustic Telescope J. Billingsley and R. Kinns, “The acoustic telescope”Journal of Sound and Vibration, 48, (4) 485-510, 1976.

Computer: CA1 LSI-2, 48 kilobytes

AIAA JOURNAL VOL. 14, NO. 4, 489-497, APRIL 1976

Laufer, Schlinker, and Kaplan

Jet engine noise source location: The polar correlation techniqueM.J. Fisher, M. Harper-Bourne, and S.A.L. GleggJSV 51(1), 23-54, 8 March 1977.

Fisher, Harper-Bourne and Glegg

Polar Correlation Technique in Context

J. Billingsley, “A comparison of the sourcelocation techniques of the acoustic telescopeand polar correlation,” JSV 61(3), 419-425,1978.

More History• Linear arrays

- Soderman and Nobel, 1974- Billingsley and Kinns, 1976

• Directional mirror microphones, 1976- Grosche, et al, Kendall, Schlinkler,

• Polar correlation technique- Fisher, Harper-Bourne, and Glegg, 1977

• Advanced algorithms- CLEAN: Högbom, 1974- Maximum likelihood: El-Behery & MacPhie, 1978- MUSIC: Schmidt, 1986- Robust adaptive beamforming: Cox, et al, 1987, Gramann & Mocio, 1993- Making cross arrays work: Elias, 1995- DAMAS: Brooks & Humphreys, 2004- CLEAN-SC: Sijtsma, 2007

• Flyover testing-Michel, et al, 1997

• Wind tunnel techniques (spiral arrays, diagonal deletion, ignoring reflections)- Dougherty & Underbrink, 1994

Beamforming Algorithms

Optical Beamforming

Acoustics Beamforming

Time Domain

pn(t) = time-domain pressure at microphone n,n = 1,…, N. (real)

1 2 ... N

Dataacquisitionsystem

noise

Loopthroughgrid points

Delay

Array sum

Color contour plot

Integrate square

n n

Delay

Array data Array data in emission time

( )jn

t !r

"+

!

t

j!r

Case of one source at

Frequency domain

un( t) = pn

!" / 2

" / 2

# (t + t ' )ej$ t'

dt'

narrowbandcomplexpressure

τ = block length ˜ 1-100 ms

1/τ = bandwidth

1 2 ... N

r u t( ) =

u1

t( )

u2

t( )

u3

t( )

...

uN

t( )

!

"

# # # # # #

$

%

& & & & & &

Dataacquisitionsystem

Digital filter

noise

A =

v u

v u

†time average

f (t) =1

Tf (t)dt

0

T

!

T ˜ 20 seconds (limited by disk storage or source motion)

Cross-spectral matrix

Frequency domain data model

v u t( ) =

v C

m

m=1

M

! Sm

t( ) +r n t( ) = C

v S (t) +

r n t( )

Q =

v S (t )

v S

†(t)

ICQCA n

2† !+=

If

and integration is long enough, then

where

Frequency domain beamforming

mmCACmb !!=!vv

†)(

Array design goal

mmmmCC !! " #vv

ideally

mmQmb !!=!)(

Nature of a Beamform Map

Nature of a Beamform Map

7 dB dynamic range 20 dB dynamic range

7 dB dynamic range 20 dB dynamic range

1/3 OctaveBands (Toowide fornarrowbandbeamforming)

20 dBdynamicrange

7 dB dynamic range 20 dB dynamic range

1/3 OctaveBands (Toowide fornarrowbandbeamforming)

7 dB dynamicrange

Problem Cases: Two Sources

7 dB dynamic range 20 dB dynamic range

Weaker Source(10 dB down)

Coherent Source

Problem Case: Extended Source

7 dB dynamic range 20 dB dynamic range

Weaker Source Coherent Source

DAMAS, Eigenvalues, CLEAN-SC and TIDY

Goal: explain these buttons

CLEAN IdeaDirty map (initially regular beamforming) Clean map (initially blank)

• Find peak• Move it to clean map• Remove contribution from data and dirty map (removes sidelobes too)

• • •

• Iterate until dirty map is empty• Clean map now contains real sources

- No sidelobes- No peak spreading

Final clean map (result)Final dirty map (empty)

(Högbom, 1974)

Mutually Incoherent Sources

!

A = Qm

r C

m

r C

m

m=1

M

" +#n

2I

!

r "

1

!

r "

2

!

r " M map

!

r "

!

r x

1

!

r x

2

!

r x

n

!

r x

N

!

r C

n

r " ( )

Point Spread Function

Array

Beamform Grid

Consider the steering vector as a function of the beamform grid point

!

r C

n

r " ( )

Point Spread Function

!

b (r " )=

1

N2

v C

†r " ( ) A

v C

r " ( )Beamform map:

Assume incoherent sources

!

b (r " )= Qm psf

r " ,

r " m( )

m=1

M

#

where

!

psfr " ,

r " m( )=

v C

†r " ( )

r C m

2

DAMAS

!

Amm'= psf

r m ,

r m'( )=

v C

†r m( )

r C m '

2

!

r x =

Q1

.

.

.

QM map

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

!

r y =

br "

1( ).

.

.

br " M map( )

#

$

% % % % % %

&

'

( ( ( ( ( (

!

r y = A

v x

(A is not the CSM on this slide …)

(Brooks and Humphreys)

About DAMAS

• Important advancement in beamforming

• Assumes incoherent sources

• Narrow band

• Requires good estimate of psf

• Very slow in its pure form

• Closely related to other deconvolution methods used in image processing

Effect of DAMAS: Incoherent SourceConventional12 dB dynamic range

Weakersource

Weakersource

DAMAS212 dB dynamic range

Effect of DAMAS: Coherent SourcesConventional

Coherentsource

DAMAS2

Coherentsource

Eigenvalues

!

A = Qm

r C

m

r C

m

m=1

M

" +#n

2I

!

A = "n

r V

n

r V

n

n=1

N

#

(Schmidt, 1986)

Eigenvalues: Incoherent, First EVConventional

Weakersource

First EV

Weakersource

Eigenvalues: Incoherent, Second EVConventional

Weakersource

Second EV

Weakersource

Eigenvalues: Incoherent, Third EVConventional

Weakersource

Thrid EV

Weakersource

Eigenvalues: Coherent, First EVConventional

Coherentsource

First EV

Coherentsource

Second EV is 27 dB

Move Away from the Assumptionof Mutually Incoherent Sources

CLEAN-SC(Sijtsma)

h is determined so that

!

C j ACmax

= C jGCmax

for all steering vectors Cj.

!

"CSM = Qmax

hh

TIDY(Dougherty 2009)

Similar to CLEAN-SC, but operates in the time domainusing the cross correlation matrix instead of the crossspectral matrix. Wide band.

!

bFD

xm( ) =

1

N2

r C

†x

m( )Ar C x

m( ) =1

N2

Ci

*x

m( )AikC

kx

m( )k= 0

N"1

#i= 0

N"1

#

( ) ( ) ( )!! "= tptpR kiik

!

bTD

xm( ) =

1

N2

s "im( )Rik

t( )s #" km( )k= 0

N#1

$i= 0

N#1

$t= 0

TD, FD relationship for beamforming

!

s "( ) f t( ) = f t # "( )Shift operator

Effect of TIDY: Incoherent SourceConventional12 dB dynamic range

Weakersource

Weakersource

TIDY12 dB dynamic range

Effect of TIDY: Coherent SourcesConventional

Coherentsource

TIDY

Coherentsource

Effect of TIDY: Extended Source

Weaker Source Coherent Source

Conventional TIDY

Bandwidth too large for DAMAS

Other Deconvolution Algorithms

Coherent Source

Conventional TIDY

Bandwidth too large for DAMAS

• Richardson-Lucy and NNLS (image processing)See Ehrenfried & Koop AIAA 2006-2711

• DAMAS-C (Brooks & Humphreys)

• LORE (Ravetta)

• Generalized inverse beam-forming (Suzuki)

Airframe Noise

Wind tunnel testing: setup for a closed jet test

phased array

noise

phased arrays

phased arrayflow

noise

flow

RWS

13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference) AIAA 2007-3448A Preliminary Study of Landing Gear Noise in Low-Speed Wind Tunnel

Hiroki URA, Takeshi ITO, Toshimi FUJITA, Akihito IWASAKI, Norihisa ANDO and Jun SATO

URA, ITO, FUJITA,IWASAKI, ANDO and SATO

6.3 kHz7 dB range

Wind tunnel testing: setup for an open jet test

phased array

phased array

free jet nozzle

free jet nozzle

flow

noise

flow

noise

Michel, U., Barsikow, B.,Helbig, J., Hellmig, M., andSchüttpelz, M., “Flyover noisemeasurements on landingaircraft with a microphonearray," AIAA Paper 98-2336,1998,

Michel, U., Barsikow, B.,Helbig, J., Hellmig, M., andSchüttpelz, M., “Flyover noisemeasurements on landingaircraft with a microphonearray," AIAA Paper 98-2336,1998,

AIAA Paper 98-2336, 1998

767 737

Doughery, R. P. , F. W. Wang, E. R. Booth, M. E. Watts, N. Fenichel,and R. E. D’Errico, “Aircraft wake vortex measurements at DenverInternational Airport,” AIAA Paper. 2004-2880, May, 2004.

Fan Noise

Boeing/GE LSAF Test 1993

Boeing/Rolls Royce

Boeing/Pratt&Whitney ICD Array, 1999

-40 -30 -20 -10 0 10 20 30 40

70

75

80

85

90

Spinning order, m

2800 Hz

-40 -30 -20 -10 0 10 20 30 40

68

70

72

74

76

Spinning order, m

2708 Hz

Co-rotating mode Counter-rotating mode

13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference) AIAA 2007-3696

Feasibility of In-Duct BeamformingPieter Sijtsma

Sijtsma

Sijtsma

Virtual Rotating Microphone Imaging of Broadband Fan NoiseRobert P. Dougherty and Bruce E. Walker

AIAA-2009-3121

Dougherty and Walker

Dougherty and Walker

Baseline Modified

Dougherty and Walker

Phased Array Noise Source Localization MeasurementsMade on a Williams International FJ44 Engine

Gary G. PodboyNASA Glenn Research Center

Cleveland, OhioU.S.A.

Csaba HorvathASRC Aerospace Corporation

Cleveland, OhioU.S.A.

Presented by Daniel L. Sutliff at15th AIAA/CEAS Aeroacoustics Conference

Miami, FloridaMay 12, 2009

3000 lbf (12500 N) thrust class

16 fan blades

2 spools LP: fan, 3-stage axial comp, 2-stage axial turbine HP: single-stage centrifugal comp, single-stage axial turbine

The Williams FJ44 Engine

Podboy and Horvath

OptiNav Array 48 Phased Array System

48 flush-mounted electretmicrophones

1m x 1m Al plate

Log spiral arrangement

Data reduction options-conventional beamforming-deconvolution methods

Podboy and Horvath

OptiNav Array 48 Phased Array System

Software overlays acoustic source location data on top of photo taken with the camera.

Podboy and Horvath

Peak

Peak – 7

(dB)

10 kHz 1/3rd Octave Beamform Map for Engine at 100% Speed

Podboy and Horvath

1/3rd Octave Beamform Maps for 3 Engine SpeedsPodboy and Horvath

Engine Noise

Noise Source Analysis of an Aeroengine with a New Inverse Method SODIX

Ulf Michel and Stefan Funke

AIAA-2008-2860

Michel and Funke

NASA/Honeywell EVNERT 2006

Phased Array Beamforming with 100-foot Polar Arc Microphones in a Static Engine Noise Test

46th AIAA Aerospace Sciences Meeting and Exhibit 7 - 10 January 2008, Reno, Nevada AIAA 2008-51

Robert P. Dougherty and Jeff M. Mendoza

Dougherty and Mendoza

60% Power, 5° High Frequency Array

dB

Dougherty and Mendoza

Jet Noise

Boeing/Honeywell Cage Array, 1999

800 Hz630 Hz500 Hz

400 Hz250 Hz125 Hz

Cage Array, Baseline Configuration

11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference) 23 - 25 May 2005, Monterey, California AIAA 2005-2842

Phased-array Measurements of Single Flow Hot JetsSang Soo Lee and James Bridges

LOCALIZATION OF MULTIPLE TYPES OF JET NOISE SOURCES

12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) 8 - 10 May 2006, Cambridge, Massachusetts AIAA 2006-2644

Dimitri Papamoschou and Ali Dadvar

Papamoschou and Dadvar

Supersonic With ShocksImproved Phased Array Imaging of a Model Jet

Robert P. Dougherty and Gary G. Podboy

AIAA-2009-3186

90˚ 40˚Condition 2

Mj = 0.89, Ma = 1.46

St = 0. 071 - 0.14

St = 0.14 - 0.29

St 0.29 - 0.57

St = 0.57 - 1.15

St = 1.15 - 2.30

St = 2.30 - 4.60

40˚

90˚

Condition 2Mj = 0.89, Ma = 1.46

CF (kHz) BF Peak (dB) Array Ave. (dB) TIDY Integ. (dB) Source Loc (diam.)

1 100.0 101.1 101.4 9.2

2 103.5 106.1 105.6 6.6

4 103.1 108.3 107.5 5.4

8 98.9 108.0 106.8 3.5

16 91.3 106.0 104.2 1.8

32 78.2 98.3 92.7 0.8

OASPL 113.6 112.6

CF (kHz) BF Peak (dB) Array Ave. (dB) TIDY Integ. (dB) Source Loc (diam.)

1 119.4 118.5 119.9 8.4

2 122.4 122.3 122.8 5.3

4 122.1 122.5 122.7 3.6

8 115.3 117.5 117.0 2.2

16 105.7 110.9 109.0 1.1

32 90.4 100.7 97.2 0.1

OASPL 126.9 127.3

90˚ 40˚Mj = 1.81, Ts = TambRobert P. Dougherty and Gary G. Podboy

St = .058-.12

St = .12-.23

St = .23-.46

St = 46-.93

St =. 93-1.86

St = 1.86-3.72

Conventional

TIDY

Conventional

TIDY

Underexpanded, Supersonic CaseRobert P. Dougherty and Gary G. Podboy

Dipole Noise StudyOptiNav Aeroacoustic FacilityMay, 2009

OptiNav Aeroacoustic Facility

Vortex SheddingTIDY

Vortexshedding

Shearlayerturbulence

Shop vac noise

Vortex Shedding: Dipole Sound

Vortex Shedding: Dipole Parallel to Array

TIDYConventional

Dipole Beamforming

TIDY, dipoleConventional, dipole

Option in Beamform Interactive

See also: papers by Liu, Quayle and Dowling (and Sijtsma); Suzuki

Shear Layer Noise

N1 = 127 Hz (7620 RPM)dstring = 1.7 mmrHub = 4 cmrTip = 20 cmMtip = 0.46

String TrimmerNoise

!

f =c

c + vs

f0

Receding string

Approaching string

!

vs

31.9 m/s

159.6 m/s

- 31.9 m/s

- 159.6 m/s

Assume c = 344 m/s, St = 0.21

13,467 Hz

3605 Hz

4342 Hz

36,779 Hz

Frequencies14,518 Hz

VortexSheddingFrequency

Doppler ShiftedFrequency

1 2 34Shaft order

StringSpeed

!

f0

= Stvs

d

3940 Hz

19,715 Hz

19,715 Hz

3940 Hz

Conventional

TIDY

X-Dipole

TIDY X-Dipole

Component Models:TIDY Integral

Freq1 Freq2 Time1 Time2 z(m) Mic_Med. Peak_BF Integral xPeak yPeak

6120.6 6491 0 8.3 0.5 71.6 60.9 57.8 98 82

6491 6890.4 0 8.3 0.5 72.6 64.1 63.1 98 78

6890.4 7314.5 0 8.3 0.5 73.7 64.8 64.8 95 75

7314.5 7764.6 0 8.3 0.5 75.4 68.6 68 97 67

7764.6 8226.3 0 8.3 0.5 77.5 73.5 72.9 97 67

8226.3 8698.2 0 8.3 0.5 78.7 72.5 72.2 96 63

8698.2 9197.3 0 8.3 0.5 80.4 73.4 72.6 96 56

9197.3 9724.9 0 8.3 0.5 82.1 75.3 74.1 96 54

9724.9 10282.9 0 8.3 0.5 83.7 76.5 75.7 97 47

10282.9 10872.8 0 8.3 0.5 86.7 81.7 80.9 97 36

10872.8 11496.6 0 8.3 0.5 89.8 84.4 83.4 97 33

11496.6 12156.2 0 8.3 0.5 93.1 87.3 87.2 97 21

12156.2 12891.7 0 8.3 0.5 95.8 91.3 88.7 98 17

12891.7 13712.4 0 8.3 0.5 96 85.2 82.2 98 13

In-Plane String Trimmer Noise(String Components, 1Hz levels)

Approaching,Dipole

Receding,Dipole

Approaching,Monopole

Conclusion

Phased Array Technology is

• Well suited to aeroacoustics

• Nearly indispensable

• Continuously evolving

• Quite practical at this point

PostscriptNotes added after the presentation

• Brian Tester and Ulf Michel have both noted that flyover measurements were reported in: G.P. Howell, A.J. Bradley, M.A. McCormick, and J.D. Brown, “De-Dopplerization and acoustic imaging of aircraft flyover noise measurements,” Journal of Sound and Vibration 105(1) 151-167, 1986.

• Another source of good examples is: L. Brusniak, J.R. Underbrink, and R.W. Stoker, “Acoustic imaging of aircraft noise sources using large aperture phased arrays,” AIAA 2006-2715

Recommended