Pc 922 Sharp

Preview:

Citation preview

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 1/7

PC922

PC9

High Power OPIC Photocoupler

s Features

1. Built-in base amplifier for inverter drive

O1: MAX. 0.5A (DC ) )

3. High isolation voltage between input

4. High noise reduction type

5. High speed response ( tPHL , t PLH : MAX. 5µ s )

6. High sensitivity ( IFLH : MAX. 3mA )

s Applications1. Inverter controlled air conditioners

2. Small capacitance general purpose inver-

O2P : MAX. 2.0A (pulse ) )

and output ( Viso

ters

s Absolute Maximum Ratings

Internal connection diagra

Anode

Inter

Amp

Tr1 Tr2

PC922

mark

θ θ

s Outline Dimensions ( Unit : m

d b k C SHARP i d b i h l i f h d i ifi i h b f i SHARP' d i ”

“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,

1 2 3 4

5678

1 2 3 4

5678

1 Anode

2 Cachode

3 NC

4 NC 7 GND

2. High power ( I(I

( Ta = Topr unless otherwise specified)

*1 Ta= 25˚C*2 Pulse width <=5 µ s, Duty ratio : 0.01

Ta= 25˚C*4 For 10 seconds

Parameter Symbol Rating Unit

InputForward current IF 25 mA

V R 6 V

Output

Supply voltage VCC 18 V

O1 output current IO1 0.5 A

IO1P 1.0 A

O2 output current IO2 0.6 A

IO2P 2.0 A

O1 output voltage VO1 18 V

Power dissipation P O 500 mW

P tot 550 mW

V iso

T opr - 20 to + 80 ˚C

T stg - 55 to + 125 ˚C

T sol 260 ˚C

Total power dissipation

Operating temperature

Storage temperature

*1Reverse voltage

*2O1 peak output current

*2O2 peak output current

*3 Isolation voltage

*4 Soldering temperature

7. Recognized by UL, file No. E64380

5 000

An OPIC consists of a light-detecting element and signal-

processing circuit integrated onto a single chip.

* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.

g Lead forming type

gg TÜV

( I type ) and taping reel type ( P type ) are also available. (PC922I/PC922P)

: 5 000V rms )

V rms

*3 40 to 60%RH, AC for 1 minute,

5 O 1

6 O 2

8 VCC

θ = 0 to 13 ˚

6 . 5

± 0 . 5

1.2 ± 0.3 0.85 ± 0.2

0 . 5

T Y P .

3 . 5

± 0 . 5

3 . 4

± 0 . 5

0.5 ± 0.1 2.54 ± 0.25

9.66 ± 0.5 7.62 ± 0.3

0.26 ± 0.1

( VDE 0884 ) approved type is also available as an option.

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 2/7

PC9

s Truth Table

Input O2 Output Tr. 1 Tr. 2

ON High level ON OFF

OFF Low level OFF ON

*5 I FLH

( Ta = T opr unless otherwise specifie

Parameter Symbol Conditions MIN. TYP. MAX. Unit Fi

Input

V F1 T a = 25˚C, I F = 5mA - 1.1 1.4 V -

V F2 T a = 25˚C, I F = 0.2mA 0.6 0.9 - V -

Reverse current IR T a = 25˚C, V R = 3V - - 10 µ A -

Terminal capacitance Ct T a = 25 C, V= 0, f= 1kHz - 30 250 pF -

Output

Operating supply voltage V CC 5.4 - 13 V -

O1 low level output voltage V O1LVCC = 6V, I O1 = 0.4A,

RL2 = 10Ω, I F = 5mA- 0.2 0.4 V 1

O2 high level output voltage V O2HVCC = 6V, I O2 = - 0.4A,

IF = 5mA4.5 5.0 - V 2

O2 low level output voltage V O2L VCC = 6V, I O2 = 0.5A, I F = 0 - 0.2 0.4 V -

O1 leak current IO1L VCC = 13V, I F = 0 - - 200 µ A 3

O2 leak current IO2L VCC = 13V, I F = 5mA - - 200 µ A 4

High level supply current ICCH

T a = 25˚C, V CC = 6V, I F = 5mA - 9 13 mA -

VCC = 6V, I F = 5mA - - 17 mA -

Low level supply current ICCL

T a = 25˚C, V CC = 6V, I F = 0 - 11 15 mA -

VCC = 6V, I F = 0 - - 20 mA -

Transfercharac-teristics

*5 “ Low→High” thresholdinput current

I FLH

T a = 25˚C, V CC = 6V,

RL1 = 5Ω, R L2 = 10Ω0.3 1.5 3.0 mA 5

VCC = 6V, R L1 = 5Ω

RL2 = 10Ω0.2 - 5.0 mA 5

Isolation resistance R ISOTa= 25˚C, DC= 500V 5x1010 1011 - Ω -

“Low→High” propagation delay time t PLH

T a = 25˚C, V CC = 6V

IF = 5mA R L1 = 5Ω

RL2 = 10Ω

- 2 5 µ s

6- 2 5 µ s“High→Low ” propagation delay time t PHL

- 0.2 1 µ st r

- 0.1 1 µ s R e s p o n s e t i m e

t f

Instantaneous commonmode rejection voltage CMHT a = 25˚C, V CM = 600V(peak )IF = 5mA, R L1 = 470 Ω, R L2 = 1k Ω,∆ V O2H = 0.5V

- - V/ µ s 7

Instantaneous commonmode rejection voltage CML

T a = 25˚C, V CM = 600V (peak )IF = 0, R L1 = 470 Ω, R = 1k Ω∆ V O2L= 0.5V

- - V/ µ s 7

Rise time

Fall time

s Electro-optical Characteristics

Forward voltage

“Output : High level”

“Output : Low level ”L2

represents forward current when output goes from low to high.

40 to 60% RH

-1 500

1 500

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 3/7

PC9

s Test Circuit

Fig. 2

Fig. 4

Fig. 6

Fig. 7

Fig. 1

Fig. 3

Fig. 5

1

2

8

5

6

7

VPC922 PC922

V

7

6

5

8

2

1

IF

RL2 IO1

VCC

IF

IO2

VCC

PC922

7

6

5

8

2

1

A

1

2

8

5

6

7

A

PC922IF

VCC

IF

VCC

1

2

8

6

5

7

PC922

47Ω

1

2

8

5

6

7

PC922

Vvariable

A

VIN

tr = tfZO = 50 Ω

VO2

VCC

RL2

RL1

VCC

RL2

RL1

IF

PC922

7

6

5

8

2

1

SW

B

(peak)

GND

GND

VIN

tPLH tPHL

tftr

10%

90%

VO2

RL1

RL2VO2

VCC

VCM+ -

VCMVCM

SW at B, IF =0

∆VO2L VO2L

∆VO2H

VO2H

CMH VO2

CMH VO2

50%

50%

5

10

30

25

20

15

0

- 25 - 20 0 25 50 75 10080

Ambient temperature T a (˚C)

Fig. 8 Forward Current vs.Ambient Temperature

A

= 0.01 µ s

waveform

waveform

waveform

waveform

SW at A, I F = 3mA

waveform

F o r w a r d c u r r e n t I F

( m A )

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 4/7

PC9

0

300

0 25 50 75 10080

400

600

200

100

500

Ambient Temperature

P o w e r d i s s i p a t i o n

P O

( m W )

Ambient temperature T a (˚C)

0

300

0 25 50 75 10080

600

200

100

500

400

550

Ambient Temperature

P o w e r d i s s i p a t i o n

P t o t

( m W )

Ambient temperature T a (˚C)

25˚C

0˚C

0

12

5

10

20

50

100

200

500

0.5 1.0 1.5 2.0 2.5 3.0 3.5

50˚C

Fig. 10 Forward Current vs. Forward Voltage

F ( m A )

T a= 75˚C

- 20˚C

0.7

R e l a t i v e t h r e s h o l d i n p u t c u r r e n t

0.8

0.9

1.2

1.1

1.0

Input Current vs. Supply Voltage

0.6

R e l a t i v e t h r e s h o l d i n p u t c u r r e n t

0.8

1.6

0 25 50 100- 25 75

1.4

1.2

1.0

Ambient temperature T a (˚C)

Fig.11 “ Low→High” Relative Threshold

0.01 0.1 1.00.02 0.05 0.2 0.5

0.005

0.01

0.02

0.05

0.1

0.2

0.4

Fig.13 O 1 Low Level Output Voltage vs.

O 1 L o w l e v e l o u t p u t v o l t a g e V

( V )

O1 Output current I O1 (A)

- 20

Forward voltage V F (V)

VCC = 6VIFLH = 1T a = 25˚C

Fig.12 “ Low→High ” Relative ThresholdInput Current vs. AmbientTemperature

6 8 144 10 12

Supply voltage VCC (V)

O 1 Output Current

VCC = 6VIFHL = 1T a = 25˚C

VCC = 6V

RL2 = 10 Ω

IF = 5mA

T a = 25˚C

Fig. 9-a Power Dissipation vs. Fig. 9-b Power Dissipation vs.

F o r w a r d c u r r e n t I

O

1 L

- 20

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 5/7

PC9

0- 25

0.5

1000 25 50 75

0.1

0.2

0.3

0.4

0.4A

0.1A

Ambient Temperature

Ambient temperature Ta (˚C)

Fig.14 O 1 Low Level Output Voltage vs.

O 1

L o w l e v e l o u t p u t v o l t a g e V

( V )

4.80 - 0.1

4.9

- 0.2 - 0.3 - 0.4 - 0.5 - 0.6

5.0

5.1

5.2

5.3

5.4

O2 output currrent I O2 (A)

O 2 h i g h l e v e l o u t p u t v o l t

a g e V O 2 H

( V )

0.0050.01

0.4

0.1 1.00.02 0.05 0.2 0.5

0.01

0.02

0.05

0.1

0.2

O2 output current I 2 (A)

Fig.17 O2 Low Level Output Voltage vs.O2 Output Current

O 2 L

o w l e v e l o u t p u t v o l t a g e V O 2 L

( V )

4.8- 25

5.4

1000 25 50 75

4.9

5.0

5.1

5.2

- 0.4A

- 0.5A

5.3

Ambient Temperature

O 2 h i

g h l e v e l o u t p u t v o l t a g e V O 2 H

( V )

Ambient temperature T a (˚C)

Fig.16 O2 High Level Output Voltage vs.

0- 25

0.5

1000 25 50 75

0.1

0.2

0.3

0.4

0.5A

0.1A

Fig.18 O2

44

14

146 8 10 12

6

8

10

12

25˚C

80˚C

Supply Voltage

T a = - 20˚C

Supply voltage V CC (V)

H i g h l e v e l s u p p l y c u r r e n t I C C H

( m A )

VCC = 6VRL2 = 10 Ω

IO1= 0.5A

V CC = 6V

IO2 = - 0.1A

VCC = 6VIF = 5mAT a = 25 C

O 2 L

o w l e v e l o u t p u t v o l t a g e V O 2 L

( V )

IO2 = 0.6A

V CC = 6V

Fig.15 O 2 High Level Output Voltage vs.O2 Output Current

Ambient temperature T a (˚C)

O 1 L

VCC = 6VT a = 25 C

Low Level Output Voltage vs.Ambient Temperature

Fig.19 High Level Supply Current vs.

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 6/7

PC9

64

16

146 8 10 12

8

10

12

14

25˚C

80˚C

Supply Voltage

L o w l e v e l s u p p l y c u r r e n

t I C C L

( m A )

Supply voltage V CC (V)

0

1

2

3

5

6

5 10 15 20 250

4

25˚C

- 20 C

25˚C

- 20 C

t PHL

t PLH

Fig.21 Propagation Delay Time vs.Forward Current

P H L ,

t P L H

( µ s )

Forward current I F ( mA )

T a= 80˚C

T a = 80 C

0

1

2

3

4

5

0 25 50 75 100- 25

Ambient TemperatureFig.22 Propagation Delay Time vs.

P H L ,

t P L H

Ambient temperature T a (˚C)

0.10.2

0.2

0.5 1 2 5 10 20

0.5

1

2

5

10

DC

O 2

p e a k o u t p u t c u r r e n t I O 2 P

( A )

O2 low level output voltage VO2L (V)

I02MAX. ( Pulse )

I02MAX. ( Continuous )

V C C

( M A X . )

DC ( Ta= 80˚C)

Cathode

+ 5V Anode

P C 9 2 2

+

GND

O2

O1

VCC

+

Load

6V

E

C

B

Power transistor

module

TTL, microcomputer, etc.

s Precautions for Use

CC

and GND near the device in order to stabilize power supply line.

(2) Handle this product the same as with other integrated circuits against static electricity.

T a = - 20 C VCC = 6VRL1 = 5 ΩRL2 = 10 Ω

100ms*

10ms*

1ms*

*

s Application Circuit

VCC = 6VRL1 = 5 ΩRL2 = 10 ΩIF = 5mA

*Singleosc.pulseT a= 25˚C

Fig.20 Low Level Supply Current vs.

P r o p a

g a t i o n d e l a y t i m e t

( µ s )

( 1) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V

Fig.23 O2 Peak Output Current vs.O2 Low Level Output Voltage

1s

(3) As for other general cautions, refer to the chapter “Precautions for Use ” .

P r o p a g a t i o n d e l a y t i m

e t

t PLH

t PHL

8/6/2019 Pc 922 Sharp

http://slidepdf.com/reader/full/pc-922-sharp 7/7

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Recommended