OXIDATION AND REPLACEMENT OF OLEIC ACID AT THE AIR/WATER INTERFACE TO UNDERSTAND FAT-COATED AEROSOLS...

Preview:

Citation preview

OXIDATION AND REPLACEMENT OF OLEIC ACID AT THE AIR/WATER INTERFACE TO UNDERSTAND

FAT-COATED AEROSOLS

Laura F. Voss, Kandice L. Harper, Gang Ma, Christopher M. Hadad, & Heather C. Allen

Department of ChemistryThe Ohio State University

Columbus, Ohio

FundingCamille and Henry Dreyfus Postdoctoral Program in Environmental ChemistryNSF-ATM NSF-Ohio State EMSI NSF-CHE CAREER Beckman Young Investigator Award

• 3.3 billion metric tons of salt spray enters the atmosphere yearly

• Inverse micelle first proposed by Gill et al. (1983), furthered by Ellison, Tuck, & Vaida (1999)

• Field samples of marine and continental aerosols collected and analyzed by Tervahattu et al. (2002, 2005)

Dobson et al., PNAS., 97, 11864, 2000

Fat-Coated Aerosols

Tervahattu et al., J. Geophys. Res., 107, D7, 4053, 2002; D16, 4319,

2002.

TOF-SIMS Analysis of Coated Aerosols

C16C18

palmitic acid cis-oleic acid

Tervahattu et al., J. Geophys. Res., 107, D7, 4053, 2002.

Oleic Acid Monolayers

• Studied using sum frequency generation spectroscopy• Oxidation of oleic acid by ozone• Replacement of oxidation products by less soluble species

Sum Frequency Generation

Spectroscopy

2 ps, 800

100 fs, IR

800nm + IR= sum

300 cm- 1 bandwidth spectrum from every laser pulse

815810805800795790785

visible wavelength (nm)

ground state

IR excited state

virtual state

En

erg

y

3050300029502900285028002750

Incident infrared (cm-1

)

3200310030002900280027002600

Incident infrared (cm-1

)

25

20

15

10

5

0

surf

ace

pres

sure

(m

N/m

)

80706050403020

Å2/molecule

Coupling BBSFG with Langmuir trough allows simultaneous collection of spectroscopic and thermodynamic data.

Langmuir Isotherms

Concurrent Langmuir Isotherm & SFG:Oleic Acid

25

20

15

10

5

0

surface pressure (mN

/m)

8006004002000

time (seconds)

Concurrent Langmuir Isotherm & SFG:Oleic Acid

25

20

15

10

5

0

surface pressure (mN

/m)

8006004002000

time (seconds)

Oleic Acid Compression Snapshots

0.10

0.05

0.00

305030002950290028502800

Incident infrared (cm-1

)

30

20

10

0

surfa

ce p

ress

ure

(mN/

m)

80706050403020Å

2/molecule

0.10

0.05

0.00

BBSF

G in

tens

ity (a

.u.)

0.10

0.05

0.00

a

b

c

abc

0.5

0.4

0.3

0.2

0.1

0.0

BB

SF

G in

ten

sity

(a.

u.)

305030002950290028502800

Incident infrared (cm-1

)

CH2

SS

CH3

SS

CH2

FR

CH3

FR

=CH olefinic stretch

Oleic Acid Monolayer

R1

R2

+

+

··

··

··

·· · ·

+

··

oleic acid primary ozonide

nonanal

oxononanoicacid

(a)

(b)

(a)

(b)

azelaic acid

octanoic acid

nonanoic acid

Oleic Acid-Ozone Reaction Snapshots

0.10

0.05

0.00

305030002950290028502800

Incident infrared (cm-1

)

0.10

0.05

0.00

0.10

0.05

0.00

BB

SFG

inte

nsity

(a.u

.)

0.10

0.05

0.00

0.10

0.05

0.00

T=0 min

T=1 min

T=10 min

T=2 min

T=30 min

CH2 SSCH3 SS

CH3 FRCH2

FR

R1

R2

Voss et al., J. Geophys. Res. submitted

Oleic Acid Oxidation on 0.6 M NaClT=0 min

T=1 min

T=10 min

T=2 min

T=30 min

CH2 SSCH3 SS

CH3 FRCH2

FR

R1

R2

0.10

0.05

0.00

305030002950290028502800

Incident infrared (cm-1

)

0.10

0.05

0.00

BB

SF

G in

ten

sity

(a.

u.)

0.10

0.05

0.000.10

0.05

0.00

0.10

0.05

0.00

nonanoic acid octanoic acidazelaic acidnonanal 9-oxononanoic acid

product solubility

in water,

g/L

nonanal 0.096

nonanoic acid 0.28

octanoic acid 0.79

azelaic acid 2.4

9-oxononanoic acid

19

Oleic Acid-Ozone Reaction Products

0.10

0.05

0.00

BB

SF

G i

nte

ns

ity

(a

.u.)

305030002950290028502800

Incident infrared (cm-1

)

0.10

0.05

0.00

nonanal

oleic acid monolayer after 2 minute of ozone

Nonanal vs. Oxidation of Oleic Acid

0.10

0.05

0.00

305030002950290028502800

Incident infrared (cm-1

)

0.10

0.05

0.00

BB

SF

G in

ten

sit

y (

a.u

.)

oleic acid monolayer after 1 minute of ozone

oleic acid monolayer in disordered liquid state

Compression Data vs. Oxidation of Oleic Acid

Oleic Acid-Ozone Reaction

Oleic Acid Monolayer Replaces

d31-Palmitic Acid Monolayer

Monolayer Replacement

Voss et al., J. Chem. Phys. B. submitted

1.0

0.8

0.6

0.4

0.2

0.0

220021002000

Incident infrared (cm-1

)

1.0

0.8

0.6

0.4

0.2

0.0

BB

SF

G in

ten

sity

(a

.u.)

0.3

0.2

0.1

0.0

300029002800

Incident infrared (cm-1

)

0.3

0.2

0.1

0.0

d

CD3 SS

CD3 FR

CD3 AS

CH3 FR

CH2 FR

CH3 SS

CH2 SS

=CHolefinicstretch

Monolayer Replacement

Voss et al., J. Chem. Phys. B. submitted

1.0

0.8

0.6

0.4

0.2

0.0

220021002000

Incident infrared (cm-1

)

1.0

0.8

0.6

0.4

0.2

0.0

BB

SF

G in

ten

sity

(a

.u.)

0.3

0.2

0.1

0.0

300029002800

Incident infrared (cm-1

)

0.3

0.2

0.1

0.0

d

CD3 SS

CD3 FR

CD3 AS

CH3 FR

CH2 FR

CH3 SS

CH2 SS

=CHolefinicstretch

1.0

0.8

0.6

0.4

0.2

0.0BB

SF

G i

nte

ns

ity

(a

.u.)

220021002000

Incident infrared (cm-1

)

0.3

0.2

0.1

0.0

300029002800

Incident infrared (cm-1

)

After Oxidation

d31-Palmitic Acid Monolayer Reforms

Conclusions

• No spectroscopic evidence of oxidation products at the air/water interface

• Least soluble surfactants at interface• Dissolved surfactants replace reaction products• Results same on 0.6 molar sodium chloride solution

Acknowledgements

FundingCamille and Henry Dreyfus Postdoctoral Program in Environmental ChemistryNSF-ATM NSF-Ohio State EMSI NSF-CHE CAREER Beckman Young Investigator Award

Jeremy Beck

Mohamad F. Bazerbashi

Allen Group

Hadad Group

Recommended