Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental...

Preview:

Citation preview

Fundamental principles of particle physics

Our description of the fundamental interactions and particles rests on two fundamental structures :

Quantum Mech s anic•

Symme tries•

Symmetries

Central to our description of the fundamental forces :

Relativity - translations and Lorentz transformations

Lie symmetries - (3) (2) (1)SU SU U⊗ ⊗

Copernican principle : “Your system of co-ordinates and units is nothing special”

Physics independent of system choice

Special relativity

( , , , )a ct x y zµ =

( ) ( , , , )a a a a c t x y zµ µ µ+ Δ − = Δ = Δ Δ Δ Δ

Space time point not invariant under translations

Space-time vector

Invariant under translations …but not invariant under rotations or boosts

• Einstein postulate : the real invariant distance is

( ) ( ) ( ) ( ) ( )32 2 2 2 20 1 2 3

, 0a a a a g a a a a aµ ν µ

µν µµ ν =

Δ − Δ − Δ − Δ = Δ Δ = Δ Δ = Δ∑

( 1, 1, 1, 1)g diagµν = + − − −

• Physics invariant under all transformations that leave all such distances invariant :

Translations and Lorentz transformations

Quantum Mechanics

Relativity+ } Quantum Field theory

Fundamental principles of particle physics

Relativistic quantum field theory

Fundamental division of physicist’s world :

slow fast

large

small

Classical Newton

Classical relativity

Classical Quantum mechanics

Quantum Field theory

speed

Ac

t

ion

c

( )S

S = (K .E.− P.E.)dt

tA

tB

Action, S

Action 2

1

t

t

S L dt= ∫

Classical path … minimises action •

Quantum mechanics … sum over all paths with amplitude /iSe∝ •

(Lagrangian invariant under all the symmetries of nature

Lagrangian L T V= − (Nonrelativistic mechanics)

-makes it easy to construct viable theories)

“Principle of Least Action” Feynman Lectures in Physics Vol II Chapter 19

Relativistic quantum field theory

Fundamental division of physicist’s world :

slow fast

large

small

Classical Newton

Classical relativity

Classical Quantum mechanics

Quantum Field theory

speed

Ac

t

ion

c

( )

( amplitude )Si

QM e∝

( )S

1Sie

2Sie

3Sie

Matvei Petrovich Bronshtein (1906-38) Progress in Astronomical Sciences (Gostekhizdat, Moscow, 1933), Vol. 3, p. 3

… also Gamov, Ivanenko & Landau, Zh. Russ. Fiz.-Khim. O-va., Chast Fiz. 60, 13 (1928)

Bronshtein’s ‘cube of theories’

Bronshtein’s ‘cube of theories’

• No right to assume that any relativistic process can be explained by single particle since E=mc2 allows pair creation

Quantum Mechanics : Quantization of dynamical system of particles

Quantum Field Theory : Application of QM to dynamical system of fields

2 2-m xRelativistic case : U(t) e t−∝ ... nonzero for all , x t

• (Relativistic) QM has physical problems. For example it violates causality

U (t) =< x | e− i( p2 / 2m)t | x0 >= d 3 p∫ d 3 p ' < x |∫ p >< p | e− i( p2 / 2m)t | p ' >< p ' | x0 >

=1

2π 3 d 3 p∫ e− i( p2 / 2m)t eip( x− x0 )

=m

2π it⎛⎝⎜

⎞⎠⎟

3/ 2

eim( x− x0 )2 / 2t ... nonzero for all x, t

Amplitude for free propagation from x0 to x

Why Quantum field theory?

Quantum Mechanics

i ∂φ

∂t+

2

2m∇2φ = 0

2

02pEm

− = Classical – non relativistic

Quantum Mechanical : Schrodinger eq

Quantum Mechanics

22 0

2i

t mφ φ∂ + ∇ =∂

2

02pEm

− = Classical – non relativistic

Quantum Mechanical : Schrodinger eq

2 2E m− =2p

2

22

tmφ φ φ∂

∂− +∇ =2

Classical – relativistic

Quantum Mechanical - relativistic :

(Natural units = c = 1)

Klein-Gordon (Schrodinger) equation

(natural units)

Relativistic QM - The Klein Gordon equation (1926)

Scalar particle (field) (J=0) : (x)φ

2

22 2 2

tE m mφ φ φ∂

∂= + ⇒ − +∇ =2 2p

Energy eigenvalues 2 1/ 2( ) ???E m= ± +2p

1934 Pauli and Weisskopf revived KG equation with E<0 solutions as E>0 solutions for particles of opposite charge (antiparticles). Unlike Dirac’s hole theory this interpretation is applicable to bosons (integer spin) as well as to fermions (half integer spin).

1927 Dirac tried to eliminate negative solutions by writing a relativistic equation linear in E (a theory of fermions)

As we shall see the antiparticle states make the field theory causal

(natural units)

Physical interpretation of Quantum Mechanics

Schrödinger equation (S.E.) 21

2 0t mi φ φ∂∂ + ∇ =

* *( . .) ( . .)i S E i S Eφ φ− continuity 0 eq. .tρ∂∂ +∇ =j

2=ρ φ

“probability current”

* *2 ( )im φ φ φ φ= − ∇ − ∇j

“probability density”

Divergence Theorem

∇.M dV= M .n dSΓ∫∫

Ω∫∫∫

Physical interpretation of Quantum Mechanics

Schrödinger equation (S.E.) 21

2 0t mi φ φ∂∂ + ∇ =

2=ρ φ

* *( . .) ( . .)i S E i S Eφ φ− continuity 0 eq. .tρ∂∂ +∇ =j

“probability current”

* *2 ( )im φ φ φ φ= − ∇ − ∇j

“probability density”

**( )t ti φ φρ φ φ∂ ∂∂ ∂= −

2. , 2ip xNe E Nφ ρ−= =3 2

V

dV d x Eρ ρ= =∫ ∫

* *( )( , )

ijµ

φ φ φ φρ

= − ∇ − ∇=

jj

0

. 12

ip xp p Vf e± =

Normalised free particle solutions

Klein Gordon equation 2

22

tmφ φ φ∂

∂− +∇ =2

22E Nρ =

Negative probability?

Lorentz transformations :

xµ → Λν

µxν = Λνµxν

ν=0

3

∑ = x 'µ ⇒ gµνx 'µ x 'ν = gµνxµxν ⇒ gµνΛα

µΛβν = gαβ

Solutions :

• 3 rotations R

(Summation assumed)

1 0 0 00 cos sin 00 sin cos 00 0 0 1

θ θθ θ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

( )zR θctxyz

⎛ ⎞⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

ctxyz

⎛ ⎞⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

cos sincos sin

ctx yy x

z

θ θθ θ

⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

gµν = Diagonal 1,−1,−1,−1( )

Lorentz transformations :

xµ → Λν

µxν = Λνµxν

ν=0

3

∑ = x 'µ ⇒ gµνx 'µ x 'ν = gµνxµxν ⇒ gµνΛα

µΛβν = gαβ

Solutions :

• 3 rotations R

1 0 0 00 cos sin 00 sin cos 00 0 0 1

θ θθ θ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

• 3 boosts B

cosh sinh 0 0sinh cosh 0 00 0 1 00 0 0 1

α αα α

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

• Space reflection – parity P

1 0 0 00 1 0 00 0 1 00 0 0 1

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

• Time reflection, time reversal T

1 0 0 00 1 0 00 0 1 00 0 0 1

−⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

(Summation assumed)

The Lorentz transformations form the group, G , SO(3,1) 1 2 1 2( , )g g G if g g G∈ ∈•

Rotations

iJThe are the “generators” of the group. SO(3) (SU(2))

Their commutation relations define a “Lie algebra”†.

Can represent group element in terms of “generators” of an algebra

. /( ) ,iR e θθ −= J

( . . )c f = ×J r p

Angular momentum operator

3

1[ , ]i j ijk k

kJ J i Jε

=

= ∑

123 231 312 213 132 321

totally antisymmetric Levi-Civita symbol,

1; 1ijkε

ε ε ε ε ε ε= = = + = = = −

( )..z y xJ i x y∂ ∂∂ ∂= −

Lie algebra SU(2)

( ) ( ) ( ) ( )x y x yR R R Rε η ε η− −

1 0 0 1 0 1 0 0 1 00 1 0 1 0 0 1 0 1 00 1 0 1 0 1 0 1

η ηε ε

ε η ε η

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

≈1 εη 0

−εη 1 00 0 1

⎜⎜⎜

⎟⎟⎟= Rz (εη) ≈ (1− iεηJz )

( ) ( ) ( ) ( )x y x yR R R Rε η ε η− −

(1 )(1 )(1 )(1 ) ( )x y x y x y y xi J i J i J i J J J J Jε ε ε ε εη= − − + + = − −

Equating the two equations implies

[ , ]x y zJ J iJ= QED

Derivation of the commutation relations of SO(3) (SU(2))

, (infinitesimal)smallε η

Demonstration that ( ) ziJZR e θθ −=

cos sin '( ) ( , ) ( ) ( ', ')

sin cos 'Z Z

x x xR x y R x y

y y yθ θ

θ ψ θ ψθ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞≡ = = ≡⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

For small θ ,

x 'y '

⎛⎝⎜

⎞⎠⎟=

x +θ yy −θx

⎛⎝⎜

⎞⎠⎟

RZ (θ)ψ (x, y) =ψ (x +θ y, y −θx) ≈ψ (x, y) +θ( y ∂ψ

∂x− x ∂ψ

∂y)

= (1− iθ(xpy − ypx ))ψ (x, y)

i.e. RZ (θ) ≈ (1− iθ(xpy − ypx )) = 1− iθJz

For large θ RZ (θ = nε) = e− iJzθ

( )..z y xJ i x y∂ ∂∂ ∂= −

Rotations

R(θ) = e− iJ .θ /

( . . )c f = ×J r p

/ziJ θ− /ziJe θ−= ( )zR θ I= ( ) ( )1 / . / ...

2 z ziJ iJθ θ+ − − +

1 0 0 00 cosθ sinθ 00 − sinθ cosθ 00 0 0 1

⎜⎜⎜⎜

⎟⎟⎟⎟

ctxyz

⎜⎜⎜⎜

⎟⎟⎟⎟

ct 'x 'y 'z '

⎜⎜⎜⎜

⎟⎟⎟⎟

= Rz (θ)

ctxyz

⎜⎜⎜⎜

⎟⎟⎟⎟

=

/ziJ− =

0 0 0 00 0 1 00 −1 0 00 0 0 0

⎜⎜⎜⎜

⎟⎟⎟⎟

−iJz / ( )2

=

0 0 0 00 1 0 00 0 1 00 0 0 0

⎜⎜⎜⎜

⎟⎟⎟⎟

Rz (θ)

=

1

1+θ 2

2+ ... θ + ...

−θ + ... 1+θ 2

2+ ...

1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

= e− iJzθ /

The matrix “representation” of J acting on a four vector

The Lorentz transformations form the group, G , SO(3,1) •

Recommended