NSF Workshop on Light Source Facilities L a w r e n c e L ...NSF Workshop on Light Source Facilities...

Preview:

Citation preview

1 BROOKHAVEN SCIENCE ASSOCIATES

Beyond 3rd Generation: Overview

NSF Workshop on Light Source FacilitiesLawrence Livermore National Laboratory

January 9-10, 2008

S. KrinskyBNL

2 BROOKHAVEN SCIENCE ASSOCIATES

Fourth Generation Sources

• Storage Ring

• Energy Recovery Linac

Continuous Sources

• Self-Amplified Spontaneous Emission

• Seeded Free-Electron Laser

Pulsed Sources

3 BROOKHAVEN SCIENCE ASSOCIATES

Courtesy D. MonctonCourtesy J. Corlett

Light Source Development

4 BROOKHAVEN SCIENCE ASSOCIATES

Horizontal emittance determined by equilibrium between radiation damping

and quantum fluctuation: !H~"2/MCell3

Small emittance (~30pm)! large circumference (>2km) and small dispersion ! strong chromaticity sextupoles ! Limited dynamic aperture

& energy acceptance! short lifetime & difficult injection

One possibility is to have an accumulator ring and the storage ring and transfer

the beam periodically (few minutes) via on-axis injection

Fourth Generation Storage Ring

5 BROOKHAVEN SCIENCE ASSOCIATES

Energy Recovery LinacSuperconducting linac: after use the electron beam is re-circulated through

the linac at decelerating phase returning energy to the RF cavities

Emittance is determined by the normalized emittance of the electron source

! = !n / "

6 BROOKHAVEN SCIENCE ASSOCIATES

Cornell Energy Recovery Linac (ERL)

Courtesy S. Gruner

Modes Hi-flux

Hi-Coherence

Energy (GeV) 5 5Current (mA) 100 25Bunch Charge (pC) 77 19Repetition Rate (MHz) 1300 1300

Geom. Emittance, both Horiz. & Vert. (pm)

30 8

RMS Bunch Length (fs) 2000 2000

Relative electron energy spread (x10-3)

0.2 0.2

7 BROOKHAVEN SCIENCE ASSOCIATES

Tran

sver

se c

oher

ent f

ract

ion

Ph/s

/0.1

%/m

m2 /m

rad2

Key technical challenges

• development of low emittance, high average current electron source

• transport of the electron beam while maintaining the small emittance

• achieve level of stability now routine in storage rings

Cornell Energy Recovery Linac (ERL)

8 BROOKHAVEN SCIENCE ASSOCIATES

r

)2

21(22

Kwr !"

#

$$

wr N1

"%$$

Undulator Radiation

&&&&

'

(

))))

*

+

!!" 222

2122

)( ,##

$,$ Kwr

w

w

r NK 21

2/1 2

220 "

!"

% ,#$$

w

rw L

$, "

$$$ wcoh N"%" /.2!

9 BROOKHAVEN SCIENCE ASSOCIATES

….....Z=0 Z=Lw

undulatorelectrons Radiation

tj : arrival time of jth electron at z=0

- . - .je

tiN

jeEE/

// 0"

"1

~

1

~

- . - . - . - . 123

456 7!8 9

2

1 1 tieee etndtNNNII ///

Incoherent emission Coherent emission

Coherent emission is important when electrons are bunched on scale of the radiation wavelength

Coherent Emission

- .tn - .tE

10 BROOKHAVEN SCIENCE ASSOCIATES

:# sin;"%

At resonance, while traversing one period of the undulator, the electron falls one radiation wavelength behind the EM-wave

swr

K $$#

"!22

2/21

Energy Modulation of Electron Beam

: =Phase of electron relative to EM-wave

##%

:

11 BROOKHAVEN SCIENCE ASSOCIATES

energymodulatorseed ! dispersion section

R56Radiator out !/m

Optical Klystron

056 #

#%"% Rse-

e-

:## sin0

;"%

##%

: :

- .:n

12 BROOKHAVEN SCIENCE ASSOCIATES

J

tTJ

oEtc <

=<

"=

<

<7> ?)22

212(

Energy Modulation

Spatial Bunching

=

Ee-,aw

FEL Amplifier

@A$

4w

GL 8

- .B CA

ew

II

KJJK

Area 2/12/)2( 2

223

!"

#A$$

@

@#D# E

A$

#FF

4~n"

- . - . - .GeVEAmpIGWP esat @8

13 BROOKHAVEN SCIENCE ASSOCIATES

- .G

r

LzNoiseseed

av eeddP

ddP

ddP 2

2

2

91

/D//

///

77

112

3

445

6&'(

)*+!&

'(

)*+8

time

Sin

gle

shot

inte

nsity

/DA /"cohT

Sin

gle

shot

spe

ctru

m

/D

SASE

Av

Spec

trum

….....Tb Z=0 Z=Lw

undulatorelectrons SASE

SASE: Single Transverse Mode, Many Longitudinal Modes

# temporal modes=Tb/Tcoh

14 BROOKHAVEN SCIENCE ASSOCIATES

100 nm 0.15 nm (LCLS) 0.1 nm(XFEL)Energy (GeV) .3 14 20

Peak Current (Amp) 500 3400 5000

N. Emittance (mm-mrad) 3 1.2 1.4

Energy Spread (%) .05 .01 .005

Undulator Length (m) 15 120 170

Pierce Parameter 2x10-3 5x10-4

Difficulty increases as output wavelength decreases

15 BROOKHAVEN SCIENCE ASSOCIATES

...existing linac

L0

rfgun

L3L1 X L2

Single bunch, 1nC, 1.2#m!rad,"120"H*

Key Technical Challenges

• Photo-injector (project has achieved excellent results)

• Bunch compression and transport through maintaining

e-beam brightness

• Controlling wakefield effects

• Trajectory through long undulator

• Production of fs pulses

undulator

LCLS

16 BROOKHAVEN SCIENCE ASSOCIATES

modulator radiatordispersion section

Using seed one can achieve full temporal coherence

• energy modulation

• spatial bunching in dispersion section

• coherent emission in first part of radiator

• exponential gain in second part of radiator

seed output

High-Gain Harmonic Generation (HGHG)

17 BROOKHAVEN SCIENCE ASSOCIATES

Spectrum of HGHG (800nm!266nm) and unsaturated SASE under the same electron beam condition

0.23 nm FWHM

SASE x105

Wavelength (nm)

Inte

nsity

(a.u

.)

HGHG

L.H. Yu et al

BNL/

DUV-FELPRL 91 (2003)

18 BROOKHAVEN SCIENCE ASSOCIATES

" 5" 25"

e- e-

Cascaded HGHGUse output of one HGHG stage as input to next

Key Technical Challenges

• Development of short wavelength seed laser

• Synchronization of lasers

• Demonstration of cascading

• Tunable output wavelength

(Shaftan & Yu have demonstrated scheme to vary output wavelength

with constant seed wavelength)

19 BROOKHAVEN SCIENCE ASSOCIATES

A Seeded X-Ray FEL User Facility

20 BROOKHAVEN SCIENCE ASSOCIATES

source # trans. modes

# long. modes

photons/pulse

pulses/second

ERL 1-2 104 106 109

LCLS 1 103 1012 102

XFEL 1 <103 1012 104

SXFEL 1 1 >1011 106

Based on table from D. Moncton

Performance Goals

Recommended