Nanoparticles in Organic Solvents with Polymers · 2017-12-21 · Institute of Mechanical Process...

Preview:

Citation preview

Institute of Mechanical Process Engineering and Mineral Processing

Nanoparticles in OrganicSolvents with Polymers

Stability and Consequences Upon MaterialSynthesis Through Spray Drying

Martin Rudolph, Urs A. Peuker

1

German Research Foundationproject: PE1160/7-1

martin.rudolph@mvtat.tu-freiberg.de

*

June 29th 2011NanoFormulation 2011

Outline

2martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

3

1 Motivation

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Synthesis of highly filledpolymer nanoparticle composites ( Nano > 10 %)

Magnetic Beads forsorptive Bioseparation

Hickstein, B., Peuker, U.A.J Appl Poly Sci, 112, 2366

4

1 Motivation

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Synthesis of highly filledpolymer nanoparticle composites ( Nano > 10 %)

Composite Micropowderfor Micro Injection

Molding

5

1 Motivation

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Synthesis of highly filledpolymer nanoparticle composites ( Nano > 10 %)

• Overcoming problem ofdispersing(deagglomeration + mixing)

6

1 Motivation

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Synthesis of highly filledpolymer nanoparticle composites ( Nano > 10 %)

• Overcoming problem ofdispersing(deagglomeration + mixing)

• We present an alternative modular process with thesolution and spray dryingmethod

Outline

7martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

8martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Polymers• Poly(methyl methacrylate)• Poly(vinyl butyral)• Poly(bisphenol A carbonate)

• Nanoparticles• Fe3O4 magnetite,

superparamagnetic

• Solvent(s)• Dichloromethane• Ethyl Acetate

• Surfactants• carboxylic acids (C14 - C18)

PVBPMMA

PC

15 n

m

2 Solution Method

9

2 Solution Method

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

Outline

10martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

11

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

Investigations with TEM and pc-AFM

June 29th 2011NanoFormulation 2011

• TEM good distribution for spray driedmicrocomposite particle

TEM, spray dried particle

PMMA49 RS21 MAG30

12

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

Investigations with TEM and pc-AFM

June 29th 2011NanoFormulation 2011

• TEM good distribution for spray driedmicrocomposite particle

• phase contrast AFMshows good distribution in an injection moulded sample

• BUT: both investigations onlyhave a very narrow field of view

phase contrast AFM,injection moulded sample

PMMA64 RS06 MAG30

Rudolph,M. Chem Ing Tech, 82, 2189 (2010)

13

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

Investigations with TEM and pc-AFM

June 29th 2011NanoFormulation 2011

• phase contrast AFMlarge areas of higher phasevalues

phase contrast AFM,injection moulded sample

PMMA64 RS06 MAG30

14

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

Investigations broad field pc-AFM and BSE-SEM

June 29th 2011NanoFormulation 2011

• phase contrast AFMlarge areas of higher phasevalues

• similar „clusters“ for BSE-SEM

back scattering electronSEM, sample as before

PMMA64 RS06 MAG30

15

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

Agglomerates? / Primary Particles?

June 29th 2011NanoFormulation 2011

16

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

PMMA61 – RS09 – MAG30PMMA61 – RS09 – MAG30 PMMA40 – RS10 – MAG50PMMA40 – RS10 – MAG50June 29th 2011NanoFormulation 2011

Investigations broad field pc-AFM and BSE-SEM

17

3 Preliminary Investigations

martin.rudolph@mvtat.tu-freiberg.de

PMMA61 – RS09 – MAG30PMMA61 – RS09 – MAG30 PMMA40 – RS10 – MAG50PMMA40 – RS10 – MAG50

Where are they from?Where are they from?

June 29th 2011NanoFormulation 2011

18martin.rudolph@mvtat.tu-freiberg.de

3 Preliminary Investigations

June 29th 2011NanoFormulation 2011

Outline

19martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

20martin.rudolph@mvtat.tu-freiberg.de

• strong VAN DER WAALS attractionleads to agglomeration

• stabilization against agglo-meration with surfactants byliquid-liquid phase-transfer

chemisorption andphysic-chemical deaggregation

June 29th 2011NanoFormulation 2011

surfactant of choice: ricinoleic acid

Machunsky, S. Coll & Surf A, 348, 186 (2009)

Gyergyek, S. J Coll Interf Sci, 354, 498 (2011)

4 Theory of Nanoparticle Interactions

21martin.rudolph@mvtat.tu-freiberg.de

• strong VAN DER WAALS attractionleads to agglomeration

• stabilization against agglo-meration with surfactants byliquid-liquid phase-transfer

June 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

22martin.rudolph@mvtat.tu-freiberg.de

2

2

22H

AttractionvdW 24ln

22

42

6 hhh

hhhCE

12

,0

12

,21

1ln222FattyAcid

2

Repulsion entroprh

rhrhh

rrhTkA

rE

rHh

BornRepulsion entropAttractionvdW ninteractio EEEE

H 2r

Rosensweig,R.E. A.I.Ch.E.Symp.Ser., 5, 104 (1965)June 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

23martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

24martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

25martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

26martin.rudolph@mvtat.tu-freiberg.de

• strong VAN DER WAALS attractionleads to agglomeration

• stabilization against agglo-meration with surfactants byliquid-liquid phase-transfer

• stability effects by polymeraddition

non-

adso

rbin

gad

sorb

ing

stabilizing destabilizing

June 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

27martin.rudolph@mvtat.tu-freiberg.de

Depletion interaction – Phase diagrams

Ilett,S.M. PhysRevE, 51, 1344 (1995)June 29th 2011NanoFormulation 2011

4 Theory of Nanoparticle Interactions

Outline

28martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

29

5 Experiments – stability

martin.rudolph@mvtat.tu-freiberg.de

• assessment of the massconcentration of primaryparticles wprimary

• centrifugation and determi-nation of the concentration withTGA, Photospectrometer

centrifugationxprimary, supernatant < 40 nm

diluted supernatant after centrifugation,

increasing cPoly

Rudolph,M. J Coll Interf Sci, 357, 292 (2011)June 29th 2011NanoFormulation 2011

Outline

30martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

31

5a Destabilization with non-adsorbing polymers

martin.rudolph@mvtat.tu-freiberg.deP

MM

AP

C

destabilization: decreasing primaryparticle concentration with increasingpolymer concentrationJune 29th 2011NanoFormulation 2011

F in %80 70 60 50 40 30

cMag = 24.4 g/l

32

5a Destabilization with non-adsorbing polymers

martin.rudolph@mvtat.tu-freiberg.deP

MM

A

kinetics of coagulation: not rapid fast drying after mixing should reducelarge amount of agglomerates

Prim

ary

Par

ticle

s

Agg

lom

erat

es

June 29th 2011NanoFormulation 2011

kinetics measuredwith DLS

Sympatec Nanophox

cMag = 1.2g/lcPoly = 58.9 g/l

33

5a Destabilization with non-adsorbing polymers

martin.rudolph@mvtat.tu-freiberg.deP

MM

A

kinetics of coagulation: problem ofcomparability to stability investigationdue to very low colloid concentrationJune 29th 2011NanoFormulation 2011

kinetics measuredwith UVVISat 600nm

cMag = 1.2g/lcPoly = 58.9 g/l

34

5a Destabilization with non-adsorbing polymers

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Nano-Fe3O4 dispersionunder microscope withcMag = 1.5 g/l

• addition of PMMA leadsto larger light-opticallyvisible agglomerates,

= 15 min

35

5a Destabilization with non-adsorbing polymers

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Nano-Fe3O4 dispersionunder microscope withcMag = 1.5 g/l

• addition of PMMA leadsto larger light-opticallyvisible agglomerates

• inverted BSE-SEM ofspray dried particlesPMMA64-RS06-MAG30show agglomerates aswell

36

5a Destabilization with non-adsorbing polymers

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• similar agglomeratesizes for dispersion andmoulded BSE-SEM crossection

Outline

37martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

38

5b Stabilization with adsorbing polymer

martin.rudolph@mvtat.tu-freiberg.deP

VB

stabilization: increasing primary particleconcentration with increasing polymer concentration

PVB

PMMA, PC

cPoly

PMMA

PC

June 29th 2011NanoFormulation 2011

F in %80 70 60 50 40 30

39

5b Stabilization with adsorbing polymer

martin.rudolph@mvtat.tu-freiberg.deP

VB

particle size: increase in particle sizewith adsorbing polymer layer forming, of Langmuir type (line)

PVB

PMMA, PC

cPoly

June 29th 2011NanoFormulation 2011

F in %80 70 60 50 40 30

40

5b Stabilization with adsorbing polymer

martin.rudolph@mvtat.tu-freiberg.deP

VB

adsorption isotherm: Langmuir type adsorption of PVB on sterically stabilized nanomagnetite

PVB

PMMA, PC

cPoly

04.0/497.0

,1

PVBmax,

Poly

PolyPVBmax,

kggck

ck

June 29th 2011NanoFormulation 2011

F in %80 70 60 50 40 30

Outline

41martin.rudolph@mvtat.tu-freiberg.de

1) Motivation

2) Solution Method

3) Preliminary Investigations

4) Theory of Nanoparticle Interactions

5) Experiments - Stabilitya) Destabilization with non-adsorbing PMMA, PC, PSb) Stabilization with adsorbing PVB

6) Summary and Conclusion

June 29th 2011NanoFormulation 2011

42

Solution and spray drying process issuitable for nanocomposite synthesis

HOWEVER: nanoparticle interactionshave to be considered

Added, solved polymers will influencenanoparticle interaction

Stabilization through adsorbingpolymers reveals suitability of thesolution method

6 Summary and Conclusion

martin.rudolph@mvtat.tu-freiberg.de

PV

BP

CP

MM

AJune 29th 2011NanoFormulation 2011

Institute of Mechanical Process Engineering and Mineral Processing

43

Thanks for yourinterest!

Sponsored by theGerman Research Foundation:

DFG (PE1160/7-1)

Martin Rudolph

martin.rudolph@mvtat.tu-freiberg.de

June 29th 2011NanoFormulation 2011

Meet me at poster D-PO3-20» Nanofix – Nanoparticle-wax-formulationsas Additives for Extruder Compounding«

44

Supplemental

martin.rudolph@mvtat.tu-freiberg.de

Filler Homogeneity – SEM Analysis (F = 30 %)

cov(A) = 0.98

cov(A) = 5.45

Com

poun

ding

Solu

tion/

Dry

ing

B-SEMcross section Binary Voronoi

coefficient ofvariance - cov

June 29th 2011NanoFormulation 2011

45

Supplemental

martin.rudolph@mvtat.tu-freiberg.de

PMMA61 – RS09 – MAG30PMMA61 – RS09 – MAG30

PMMA49 – RS21 – MAG30PMMA49 – RS21 – MAG30

Phase contrast AFM analysis

Rudolph,M. CIT, 82, 2189 (2010)June 29th 2011NanoFormulation 2011

46

Supplemental

martin.rudolph@mvtat.tu-freiberg.de

Phase contrast AFM analysis

June 29th 2011NanoFormulation 2011

47

Supplemental

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

D – surfactant (detergent) ratio

F – filler concentration

• Composition

nano

surfactant

mmD

polymersurfactantnano

nano

mmmmF

1

1

surfactant

polymer

1

nano

polymer

polymer

111

111

DDF

DF

Poly – polymer concentration

48

Supplemental

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Interparticle Distance

1

surfactant

polymer

nano

polymernano

3

nano

111

1433

DF

xID

49

Supplemental

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

solid

solidsolidDCMPoly 1

1c

DFccc

50

Supplemental

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

51

Supplemental

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Gravimetric Characterisation with TGA/FTIR

over

all

cent

rifug

ed

overallMag,w

centriMag,wxStokes = (20 ± 2) nm

characteristic mass-loss

52

Supplemental

martin.rudolph@mvtat.tu-freiberg.deJune 29th 2011NanoFormulation 2011

• Segregation Effects with Spray Drying

fraction x50,3 wMagm(600°C-800°C) /

wMagyield

cylinder 8 µm 47.1 % 15.8 % 29.2 %cyclone 5 µm 44.5 % 15.9 % 60.5 %

filter 3 µm 21.5 % 18.7 % 10.3 %

TGA PSDcylinder cyclone filter

53

Supplemental

martin.rudolph@mvtat.tu-freiberg.de

• Spray Drying

• Büchi lab scale spray dryerco-current, inert-loop

• x50, composite 4 µm

• up to 100g/h composites

low highviscosity/concentration

June 29th 2011NanoFormulation 2011

Recommended