Measuring Optical and Thermal Properties of High...

Preview:

Citation preview

Measuring Optical and Thermal Properties of High Temperature Receivers

www.DLR.de • Folie 1 > Vortrag > Autor • Dokumentname > Datum

Johannes Pernpeintner, Thomas Fend

4th SFERA Summerschool, May 15-16, 2013, Burg Hornberg

> Vortrag > Autor • Dokumentname > Datumwww.DLR.de • Folie 2

Part I:

Thermal properties of receivers for 

SOLAR TOWER TECHNOLOGY

Thomas Fend

Part II:

Optical and thermal properties of tube receivers for 

PARABOLIC TROUGH TECHNOLOGY

Johannes Pernpeitner

Why Solar Tower Technology?

www.DLR.de • Folie 3 > Vortrag > Autor • Dokumentname > Datum

• Higher losses at higher temperatures• Higher concentration ratio

• Efficiency limited by thermal engine• Higher temperatures – higher

efficiencies

www.DLR.de • Folie 4 > Vortrag > Autor • Dokumentname > Datum

Solar Tower Technology: Example

www.DLR.de • Folie 5 > Vortrag > Autor • Dokumentname > Datum

Receivers for Solar Tower Technology

• volumetric receivers• tube receivers• direct medium receivers• …

www.DLR.de • Folie 6 > Vortrag > Autor • Dokumentname > Datum

Tube Receivers

• absorption on outer tube surface• transport of heat through tube wall to a 

medium• media: liquid salt, liquid metal, water, air

‐ thermal resistance‐ non homogeneous heating‐ tube surface temperature is higher

than medium temperature

www.DLR.de • Folie 7 > Vortrag > Autor • Dokumentname > Datum

Tube ReceiversSolar Two

• absorption on outer tube surface• transport of heat through tube wall to a 

medium• media: liquid salt, liquid metal, water, air

‐ thermal resistance‐ non homogeneous heating‐ tube surface temperature is higher

than medium temperature

www.DLR.de • Folie 8 > Vortrag > Autor • Dokumentname > Datum

Tube Receivers

Source: torresolenergy

Gemasolar

• absorption on outer tube surface• transport of heat through tube wall to a 

medium• media: liquid salt, liquid metal, water, air

‐ thermal resistance‐ non homogeneous heating‐ tube surface temperature is higher

than medium temperature

www.DLR.de • Folie 9 > Vortrag > Autor • Dokumentname > Datum

Tube ReceiversPS10/PS20

Source: desertec UK

• absorption on outer tube surface• transport of heat through tube wall to a 

medium• media: liquid salt, liquid metal, water, air

‐ thermal resistance‐ non homogeneous heating‐ tube surface temperature is higher

than medium temperature

www.DLR.de • Folie 10 > Vortrag > Autor • Dokumentname > Datum

Volumetric Receivers

• Radiation absorbed in the porous volumeof the receiver

• Front temperature lower than medium temperature

• Medium: air, pressurized air

www.DLR.de • Folie 11 > Vortrag > Autor • Dokumentname > Datum

Volumetric Receivers

0.8 mm

2 mm

• Radiation absorbed in the porous volumeof the receiver

• Front temperature lower than medium temperature

• Medium: air, pressurized air

www.DLR.de • Folie 12 > Vortrag > Autor • Dokumentname > Datum

Volumetric Receivers

Solar Tower Jülich

Tower: 60m2153 Heliostats (8.2 m²)22.7 m² receiver aperture1 h thermal storage500°C/ 30 bar1.5 MWel turbine

• Radiation absorbed in the porous volumeof the receiver

• Front temperature lower than medium temperature

• Medium: air, pressurized air

www.DLR.de • Folie 13 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

www.DLR.de • Folie 14 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

• Absorption 

www.DLR.de • Folie 15 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

• Absorption• Conductive resistance in tube wall

www.DLR.de • Folie 16 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

• Absorption• Conductive resistance in tube wall• Convective resistance

www.DLR.de • Folie 17 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

• Absorption• Conductive resistance in tube wall• Convective resistance

tables standard techniques optimization of process by

geometry and thermal properties of the employed material

www.DLR.de • Folie 18 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction: HeatTransfer Enhancing Concepts

• Increased heat transfer surface• Enhanced heat transfer by gradation

in radial direction• Thermal properties of porous

material needed• Proposed in Korean/Swiss/German 

project CMC4CSP

www.DLR.de • Folie 19 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction: Volumetric Receiver

• Conductive resistance and• Convective resistance in porous

volume

Advanced experimental techniquesnecessary if non uniform poregeometries are used

www.DLR.de • Folie 20 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

• Conductive resistance and• Convective resistance in porous

volume

Advanced experimental techniquesnecessary if non uniform poregeometries are used

www.DLR.de • Folie 21 > Vortrag > Autor • Dokumentname > Datum

Thermal Performance Prediction

• Conductive resistance and• Convective resistance in porous

volume

Advanced experimental techniquesnecessary if non uniform poregeometries are used

www.DLR.de • Folie 22 > Vortrag > Autor • Dokumentname > Datum

Thermal Conductivity of Porous Materials

• Transient Plane Source Technique+ Measurement of characteristic volumes

+ mesurement yields‐ effective thermal conductivity‐ effective thermal diffusivity‐ heat capacity

www.DLR.de • Folie 23 > Vortrag > Autor • Dokumentname > Datum

Thermal Conductivity of Porous Materials

• Transient Plane Source Technique+ Measurement of characteristic volumes

+ mesurement yields‐ effective thermal conductivity‐ effective thermal diffusivity‐ heat capacity

www.DLR.de • Folie 24 > Vortrag > Autor • Dokumentname > Datum

Effective Thermal Conductivity of Porous Materials: Metal Foams

Nickel base alloy

www.DLR.de • Folie 25 > Vortrag > Autor • Dokumentname > Datum

Convective Resistance in Porous Volume

0)(2 FSvSeff TTAT

0)( FSvF

P TTAdxdTCm

• two phase approach in continuum model

• Additional term in energyequations of solid andfluid phase

Av: volumetric convectiveheat transfer coefficient

www.DLR.de • Folie 26 > Vortrag > Autor • Dokumentname > Datum

Experimental Set-Up for VolumetricConvective Heat Transfer CoefficientAv: AAF-method 1

x=0 x=L

Absorber sample

Insulation

Air

T(t,0) T(t,L)

Heat Element

DT(t,0) DT(t,L)

Dft t

‐ Air flow with alternating temperatureprofile induced

‐ Porous sample causes phase shift andamplitude attenuation

‐ Av determined

1. ) Alternating Air flow method after Younisand Viskanta

www.DLR.de • Folie 27 > Vortrag > Autor • Dokumentname > Datum

Experimental Set-Up for VolumetricConvective Heat Transfer CoefficientAv: AAF-method

x=0 x=L

Absorber sample

Insulation

Air

T(t,0) T(t,L)

Heat Element

DT(t,0) DT(t,L)

Dft t

10 mm

Cordierite 20 ppi CB SiC 45 ppi

SSiC 10 ppi

www.DLR.de • Folie 28 > Vortrag > Autor • Dokumentname > Datum

Experimental Set-Up for VolumetricConvective Heat Transfer CoefficientAv: AAF-method

x=0 x=L

Absorber sample

Insulation

Air

T(t,0) T(t,L)

Heat Element

DT(t,0) DT(t,L)

Dft t

y = 0,15x0,62

y = 0,42x0,62

y = 0,08x0,62

0

2

4

6

8

10

0 50 100 150 200Re

Nu

76 all 4576 all 2076 all 10

www.DLR.de • Folie 29 > Vortrag > Autor • Dokumentname > Datum

Experimental Set-Up for VolumetricConvective Heat Transfer CoefficientAv: AAF-method

x=0 x=L

Absorber sample

Insulation

Air

T(t,0) T(t,L)

Heat Element

DT(t,0) DT(t,L)

Dft t

y = 0,15x0,62

y = 0,42x0,62

y = 0,08x0,62

0

2

4

6

8

10

0 50 100 150 200Re

Nu

76 all 4576 all 2076 all 10

62.01.1 Re8.4

PPInNu

www.DLR.de • Folie 30 > Vortrag > Autor • Dokumentname > Datum

Experimental Set-Up for VolumetricConvective Heat Transfer CoefficientAv: AlAv-method1

1. ) AlphaAv‐method after Brendelberger et  al.

blowermass flowmeasurement

sample beamer

IR camera

www.DLR.de • Folie 31 > Vortrag > Autor • Dokumentname > Datum

Experimental Set-Up for VolumetricConvective Heat Transfer CoefficientAv: AlAv-method

www.DLR.de • Folie 32 > Vortrag > Autor • Dokumentname > Datum

The AlAv-method: Results on MetalFoams

www.DLR.de • Folie 33 > Vortrag > Autor • Dokumentname > Datum

Conclusions

• For the prediction of the thermal performance of high temperature components characteristic quantities areneeded

• Transient plane Source Technique for thermal conductivitymeasurement

• AAF and AlAV method for volumetric convective heat transferproperties

Recommended